SOME INTRICATE NONINVERTIBLE LINKS

Wilbur Whitten

Let L be an oriented, ordered link tamely imbedded in the oriented 3-sphere S^3 , and let μ and κ be integers such that $1 \le \kappa < \mu$. We shall say that L is a generalized noninvertible link with respect to the pair (μ, κ) (or a (μ, κ) I-link) if it satisfies the following three conditions:

- (i) L has μ components;
- (ii) each sublink with κ or fewer components is invertible;
- (iii) each sublink with more than κ components is noninvertible.

L is *invertible* provided it is of the same (oriented) type as its inverse. The *inverse* differs from L only in the orientation of each component.

Now (2, 1)I-links were exhibited in [6], and a $(\mu, \mu - 1)$ I-link was given in [7] for each $\mu \geq 3$ (see also Figure 1). In this paper, we complete the picture by constructing a generalized noninvertible link for each pair (μ, κ) such that $1 \leq \kappa < \mu$ and $\mu \geq 3$. As an example, a (4, 2)I-link is given in Figure 4.

1. TWO PROPOSITIONS

The following two propositions clear the way for the constructive proof of our theorem in Section 3.

PROPOSITION 1. For each integer $\mu \geq 2$, there exists a $(\mu, 1)$ I-link in S^3 .

Proof. Each component of each (2, 1)I-link of [6] is of knot type 5_1 . As an induction hypothesis, suppose that L is a $(\mu, 1)$ I-link with $\mu \geq 2$ and that each component of L is of knot type 5_1 . Let $K_{\mu+1}$ denote an oriented knot of type 5_1 in S^3 - L, and suppose that for each $\nu=1,\,\cdots,\,\mu$ it represents an element of π_1 (S^3 - K_{ν}) that cannot be mapped onto its inverse by any inversion [5] of this group. By [6], such an element of π_1 (S^3 - K_{ν}) exists. In conjunction with the induction hypothesis, this means that each sublink of L \cup K $_{\mu+1}$ of two or more components is noninvertible. Hence, L \cup K $_{\mu+1}$ is a $(\mu+1, 1)$ I-link, and the conclusion follows by induction.

PROPOSITION 2. For each integer $\mu \geq 2$, there exists a $(\mu, \mu - 1)$ I-link in S^3 .

Proof. This proposition states the combined contents of [6] and [7]. However, in view of our objective in this paper of constructing generalized noninvertible links, it is convenient to give for each $\mu \geq 3$ a $(\mu, \mu - 1)$ I-link different from that described in [7].

The link L of Figure 1 is assumed to have $\mu \geq 3$ components, each of which is of trivial knot type. Note that the sublink $L^* = K_2 \cup \cdots \cup K_{\mu}$ is a link of Brunnian type [1], so that L^* is unsplittable while each of its proper sublinks is completely splittable. Furthermore, it is easy to see that each proper sublink of L is invertible. A proof that L is noninvertible can be constructed along the lines given in [7].

Received March 21, 1970.

Michigan Math. J. 18 (1971).