INEQUALITIES FOR CONDENSERS, HYPERBOLIC CAPACITY, AND EXTREMAL LENGTHS

Section 1981 Control of the Se

F. W. Gehring

1. INTRODUCTION

In Section 3 of this paper, we give a pair of elementary estimates for the p-capacity of a condenser in Euclidean n-space, taken with respect to an arbitrary metric g. Various choices for g yield a number of useful bounds for the conformal or n-capacity (Sections 4 and 5). We use two of these bounds to derive a distortion theorem for plane quasiconformal mappings (Section 6) and to obtain sharp bounds for the hyperbolic capacity of a plane set (Section 7). In Sections 8 and 9, we employ two other bounds to study the relation between the moduli of the two families of Jordan curves that link the interior and exterior, respectively, of a torus in 3-space.

2. NOTATION

We consider sets in Euclidean n-space R^n ($n \ge 2$) and in its one-point compactification \overline{R}^n obtained by adding the point ∞ to R^n . Points in R^n are treated as vectors, and for each $x \in R^n$ we let |x| denote the norm of x. For each set $E \subset \overline{R}^n$, we let ∂E , \overline{E} , and C(E) denote the boundary, closure, and complement of E in \overline{R}^n , while for $E \subset R^n$ and $k \in (0, \infty)$, we let $m_k(E)$ denote the k-dimensional Hausdorff measure of E. In particular, m_n will denote Lebesgue measure in R^n .

A condenser R is a domain in R^n whose complement consists of two distinguished disjoint closed sets C_0 and C_1 . R is a ring if, in addition, C_0 and C_1 are connected. For convenience of notation, we shall always assume that $\infty \in C_1$.

Suppose that g is a function that is positive and continuous in a condenser R. Then, for $p \in (1, \infty)$, we define the p-capacity of R with respect to g as

(1)
$$\operatorname{cap}_{p}(R, g) = \inf_{u} \int_{R} |\operatorname{grad} u|^{p} g^{n-p} dm_{n},$$

where the infimum is taken over all functions u that are continuous in \overline{R}^n and ACT (absolutely continuous in the sense of Tonelli) in R^n , with u=0 in C_0 and u=1 in C_1 . We call any such function u an admissible function for R. The usual p-capacity of R [27] is then simply the p-capacity of R with respect to the function g=1, that is,

(2)
$$cap_{p}(R) = cap_{p}(R, 1),$$

while for the conformal or n-capacity of R [17] we have the relation

Received September 24, 1970.

This research was supported in part by the National Science Foundation, Contract GP 111-58.

Michigan Math. J. 18 (1971).