PARACOMPACTNESS OF LOCALLY COMPACT
HAUSDORFF SPACES

Ross L. Finney and Joseph Rotman

A topological space is *paracompact* if it is a Hausdorff space and if every open
cover has a locally finite refinement that is also an open cover.

Let X be a locally compact Hausdorff space, let $A = C(X)$ be the ring of all con-
tinuous real-valued functions on X, and let $J(X)$ be the ideal in A consisting of all
continuous functions having compact support.

THEOREM (R. Bkouche). The space X is paracompact if and only if $J(X)$ is a
projective A-module.

This theorem is a corollary of a deep result [1] of R. Bkouche. The authors
heard of it through P. Samuel, who suggested that an elementary proof would be
desirable.

Recall that if a space X is paracompact and $\{V_\beta\}$ is an open cover of X, then
there exists a *partition of unity subordinate to* $\{V_\beta\}$; in other words, there exist
continuous functions $f_\beta: X \to I = [0, 1]$ such that

i) for each β, $\text{supp } f_\beta = \{x \in X: f_\beta(x) \neq 0\} \subseteq V_\beta$;

ii) the family $\{\text{supp } f_\beta\}$ is a locally finite cover of X;

iii) for each $x \in X$, $1 = \sum f_\beta(x)$.

An A-module M is projective [2, p. 132, Proposition 3.1] if and only if it has a
projective basis, that is, if there exist elements $f_\beta \in M$ and A-homomorphisms
$\phi_\beta: M \to A$ such that for each $g \in M$,

i) $\phi_\beta(g) = 0$ for almost all β,

ii) $g = \sum \phi_\beta(g) f_\beta$.

Also, in a locally compact Hausdorff space each compact subset K has a com-
pact neighborhood in X, and for each such neighborhood V there exists a continuous
separating function $s: X \to I$ that is 1 on K and 0 on $X - V$.

X *is paracompact* \Rightarrow J *is projective*. Let $\{U_\alpha\}$ be a covering of X by open
sets with compact closure. Since X is paracompact, there exists a locally finite
refinement $\{V_\beta\}$ (of course, each $V_\beta \subseteq U_\beta$ is compact). If $\{f_\beta\}$ is a partition
of unity subordinate to $\{V_\beta\}$, then each f_β has compact support, hence lies in J.

For each β, let s_β be a separating function that is 1 on the support of f_β and 0
on $X - V_\beta$. Define $\phi_\beta: J \to A$ by

$$\phi_\beta(g) = gs_\beta, \quad \text{where } g \in J.$$

We claim that the f_β and ϕ_β give a projective basis of J.

Received February 16, 1970.