PARACOMPACTNESS OF LOCALLY COMPACT HAUSDORFF SPACES

Ross L. Finney and Joseph Rotman

A topological space is *paracompact* if it is a Hausdorff space and if every open cover has a locally finite refinement that is also an open cover.

Let X be a locally compact Hausdorff space, let A = C(X) be the ring of all continuous real-valued functions on X, and let J(X) be the ideal in A consisting of all continuous functions having compact support.

THEOREM (R. Bkouche). The space X is paracompact if and only if J(X) is a projective A-module.

This theorem is a corollary of a deep result [1] of R. Bkouche. The authors heard of it through P. Samuel, who suggested that an elementary proof would be desirable.

Recall that if a space X is paracompact and $\{V_{\beta}\}$ is an open cover of X, then there exists a partition of unity subordinate to $\{V_{\beta}\}$; in other words, there exist continuous functions $f_{\beta} \colon X \to I = [0, 1]$ such that

- i) for each β , supp $f_{\beta} = \{\overline{x \in X: f_{\beta}(x) \neq 0}\} \subset V_{\beta};$
- ii) the family $\{\text{supp }f_{\beta}\}$ is a locally finite cover of X;
- iii) for each $x \in X$, $1 = \sum_{\beta} f_{\beta}(x)$.

An A-module M is projective [2, p. 132, Proposition 3.1] if and only if it has a projective basis, that is, if there exist elements $f_{\beta} \in M$ and A-homomorphisms $\phi_{\beta} \colon M \to A$ such that for each $g \in M$,

- i) $\phi_{\beta}(g) = 0$ for almost all β ,
- ii) $g = \sum_{\beta} \phi_{\beta}(g) f_{\beta}$.

Also, in a locally compact Hausdorff space each compact subset K has a compact neighborhood in X, and for each such neighborhood V there exists a continuous separating function $s: X \to I$ that is 1 on K and 0 on X - V.

X is paracompact \Rightarrow J is projective. Let $\{U_{\alpha}\}$ be a covering of X by open sets with compact closure. Since X is paracompact, there exists a locally finite refinement $\{V_{\beta}\}$ (of course, each $\overline{V}_{\beta} \subset \overline{U}_{\beta}$ is compact). If $\{f_{\beta}\}$ is a partition of unity subordinate to $\{V_{\beta}\}$, then each f_{β} has compact support, hence lies in J.

For each β , let s_{β} be a separating function that is 1 on the support of f_{β} and 0 on X - V_{β} . Define ϕ_{β} : J \to A by

$$\phi_{\beta}(g) = gs_{\beta}$$
, where $g \in J$.

We claim that the f_{β} and ϕ_{β} give a projective basis of J.

Received February 16, 1970.

Michigan Math. J. 17 (1970).