SCARCITY OF ORIENTATION-REVERSING PL INVOLUTIONS OF LENS SPACES

Kyung Whan Kwun

1. INTRODUCTION

For convenience, we shall not consider the 3-sphere as a lens space. The following theorem justifies the title of this paper.

THEOREM. (i) No lens space other than the projective 3-space P_3 admits an orientation-reversing involution. (ii) Up to PL-equivalences, there exists exactly one orientation-reversing PL involution of P_3 .

Part (i) is not new, but we have included it for emphasis. It follows from [5, Theorem V], and it is a special case of the result in [2]. We remark that the unique involution of Part (ii) is the one induced by the reflection of S^3 about the equator. The fixed-point set is the disjoint union of a projective plane and a point. As a corollary, we obtain the following result.

COROLLARY. There exists no PL action of $Z_2 + Z_2$ on S^3 that leaves a four-point set A invariant (as a set) and acts freely off A.

By a four-point set, we mean a set consisting of four distinct points. The corollary restricts PL actions of $Z_2 + Z_2$ on S^3 .

Henceforth, let h denote an orientation-reversing PL involution of P_3 with fixed-point set F. It is a consequence of the parity theorem and the Lefschetz fixed-point formula that dim F=0 or dim F=2. We shall rule out the case dim F=0 in Section 2, establish the uniqueness for the case dim F=2 in Section 3, and prove the corollary in Section 4.

2. THE CASE dim F = 0

2.1. We shall prove that h fixes exactly two points. Suppose h fixes x_1 , x_2 , \cdots , $x_k \in P_3$ and no other point. It seems to be known (and it is fairly easy to prove) that a PL involution of a finite simplicial complex becomes simplicial after a suitable subdivision. Hence we may assume h is simplicial with vertices x_i . Further, we assume that the closed stars of x_i are mutually disjoint. Let X be obtained from P_3 by removing open stars of the x_i . Then $h' = h \mid X$ is a free involution of X reversing the orientation of each boundary component of the 3-manifold X.

The Lefschetz number of h' is

$$1 - 0 + (1 - k) = 2 - k$$
.

Hence k = 2.

Michigan Math. J. 17 (1970).

Received September 18, 1969.

This research was supported in part by NSF Grant GP-8962.