A BANACH SPACE OF LOCALLY UNIVALENT FUNCTIONS

J. A. Cima and J. A. Pfaltzgraff

1. INTRODUCTION

In this paper, we study a certain real Banach space $\mathscr L$ of functions

(1.1)
$$f(z) = z + a_2 z^2 + \cdots$$

that are holomorphic and locally univalent $(f'(z) \neq 0)$ in the open unit disk $D = \{z: |z| < 1\}$. We let S denote the set of functions f(z) that are holomorphic and univalent in D with an expansion of the form (1.1). The algebraic operations in $\mathscr L$ (defined in Section 2 below) are not the usual pointwise operations, and the algebraic structure of $\mathscr L$ is of particular interest in relation to S, because local univalence in D is preserved by the addition in $\mathscr L$. We also study a certain closed subspace of $\mathscr L$, denoted by $\mathscr L_1$. Our spaces $\mathscr L$ and $\mathscr L_1$ are natural generalizations of a space introduced by H. Hornich [11].

The main results in this paper pertain to the metric properties of the sets $S \cap \mathscr{L}$ and $S \cap \mathscr{L}_1$. The set $S \cap \mathscr{L}$ is not compact, and it is of first category in \mathscr{L} . We also show that there are no isolated univalent functions in \mathscr{L}_1 . These results contrast sharply with theorems of H. Hornich [11] and G. Piranian [16]. Hornich [10] and Piranian [16] have studied topological properties of the set of univalent functions in the space $H(\phi)$ of functions f(z) holomorphic in D, equipped with pointwise operations and a metric $\rho(f, g) = \phi(f - g)$ induced by the functional

$$\phi(f) = \sup_{n} |f^{(n)}(0)/n!|^{1/n}.$$

We also show that \mathscr{L}_1 is separable and has infinite dimension. We show that \mathscr{K} , the set of univalent convex functions of the form (1.1), is a closed convex subset of \mathscr{L}_1 . A complete characterization of the extreme points of \mathscr{K} is given. We determine the dual space of continuous linear functionals on \mathscr{L}_1 . We list examples and results that indicate the relationship of \mathscr{L} (as a set of functions) to the Hardy spaces H^p and to the set of functions holomorphic on D and continuous on the closure of D.

2. THE LINEAR SPACES $\mathscr L$ AND $\mathscr L_1$

Let Λ denote the class of functions that are holomorphic in the unit disk, have nonvanishing derivative, and satisfy the normalization conditions f(0) = 0 and f'(0) = 1. When we refer to a class of functions, we shall mean the intersection of that class with Λ . For each f in Λ , define the increasing function

Received March 14, 1969.

This research was partially supported by Army Research Office Grant No. DA-ARO-D-31-124-G1151.

Michigan Math. J. 17 (1970).