IMMERSIONS OF k-ORIENTABLE MANIFOLDS

James C. Becker

1. INTRODUCTION

Let M^m denote a smooth, closed, connected m-manifold. According to the classical theorems of Whitney, M^m embeds in R^{2m} and (if m>1) immerses in R^{2m-1} . There are, however, many examples to show that the existence of an embedding $M^m \subset R^{2m-k+1}$ ($2 \le k \le m-1$) does not imply the existence of an immersion $M^m \subseteq R^{2m-k}$. In particular, complex projective space CP_m ($m=2^r$) embeds in R^{4m-1} [3] but does not immerse in R^{4m-2} [7]. In this note, we show that with additional restrictions, an embedding $M^m \subset R^{2m-k+1}$ will produce an immersion $M^m \subseteq R^{2m-k}$.

If α is a vector bundle over a CW-complex B, denote its stable equivalence class by (α) . We say that (α) is k-orientable if the restriction of α to the k-skeleton of B is stably fibre-homotopy trivial. A manifold M^m (hereafter assumed to be smooth and connected) is k-orientable if its tangent bundle $\tau(M^m)$ is k-orientable. A map $f: M^m \to N^n$ between manifolds is k-orientation-preserving if $f^*(\tau(N^n)) - (\tau(M^m))$ is k-orientable. Let $i_0: N^n \to N^n \times R$ denote the inclusion $y \to (y, 0)$ ($y \in N^n$). Our main result is the following.

THEOREM 1.1. Suppose 2k < m - 1. Let M^m be closed, and let

$$f: M^m \rightarrow N^{2m-k}$$

be k-orientation-preserving. If the composition $i_0 f: M^m \to N^{2m-k} \times R$ is homotopic to an embedding, then f is homotopic to an immersion.

Some interesting corollaries follow.

COROLLARY 1.2. Suppose $2k \le m$ - 1. Let M^m be closed and $k\text{-}\mathit{orientable}.$ If $M^m \subset R^{2m-k+1}$, then $M \subseteq R^{2m-k}$.

COROLLARY 1.3. Suppose $2k \le m-1$. Let $f: M^m \to N^{2m-k}$ be given, where M^m is closed and N^{2m-k} is k-connected. Suppose either

- (a) Mm is k-connected or
- (b) M^m is (k 1)-connected and f is k-orientation-preserving.

Then f is homotopic to an immersion.

Proof. By A. Haefliger's embedding theorem [3], $i_0 f: M^m \to N^{2m-k} \times R$ is homotopic to an embedding. Now apply Theorem 1.1.

Note that, if M^m is (k-1)-connected and $k \equiv 3, 5, 6$, or 7 (mod 8), the assumption that f be k-orientation-preserving is superfluous. To verify this, let $\nu \colon M^m \to BO$ be a classifying map for $f^*(\tau(N^{2m-k})) - (\tau(M^m))$. There is a single obstruction to lifting ν to the k-connected covering BO[k] of BO. This occurs in

Received July 10, 1969.

This research was supported by the National Science Foundation Grant GP-8747.

Michigan Math. J. 17 (1970).