PIECEWISE-LINEAR CLASSIFICATION OF SOME
FREE Z,-ACTIONS ON S#k+3

Ronnie Lee

Let S28*l denote the unit (2n + 1)-sphere. Represent each of its points by a

sequence (cq, **+, c,) of complex numbers with 27 le; |‘2 = 1. Let (S1, §27*2) de-
note the S!-action on S2nt! given by the formula

C.(co s ---, cn) = (cco’ -.., ccn).

Let p be an odd prime, and let Z; be the subgroup of S 1 generated by exp (27i/p).
Then (S1, $2n+1) induces a Zj-action on s2ntl | Jis orbit space

L%(p) = géntl /Zp

is the (2n + 1)-dimensional lens space. The purpose of this note is to study the
piecewise-linear classification of all free Zp-actions on S#k*3 (4k +3 > 17) for
which the orbit space is of the same simple homotopy type as L2ktl(p). Our main
results follow.

THEOREM 1. Let %4t (L2kt1(p)) denote the set of equivalence classes of simple
homotopy triangulations of 12X 1(p). If 4k +3 > 1, there exists an exact sequence
of pointed sets

0 — Lya(Z,)” — 942 (L) — [L2?(p); 6/PL] — o,

wheve [L2¥t1(p); G/PL] is the subgroup of G/PL-bundles on L2T1(p) and
L4k+4(2’,p)” is the veduced surgery obstruction group of C. T. C. Wall.

THEOREM II. There exists a one-to-one covrvespondence between the set

Jat (L2KH (p)) x {0, 1, -, %1}

and the set of equivalence classes of free piecewise-linear Zp-actions on g4k+3

whose orbit space has the same simple homotopy type as L2k+1(p).

In the first section, we recapitulate some generalities about nonsimply-con-
nected surgary, part of which has become folklore. We then carry out, in the second
section, an elementary computation of the group [L2k*1(p); G/PL]. Results of Sulli-
van are used in the proof of (2.1). Section 3 completes the proof of Theorem I. Sec-
tion 4 is mainly a study of the homotopy classes of piecewise-linear homeomor-
phisms of a homotopy lens space. In the last section, we complete the proof of
Theorem II.
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