ON TWO SUM THEOREMS FOR IDEALS OF C(X)

David Rudd

1. INTRODUCTION

Let C(X) denote the ring of all continuous real-valued functions on a completely regular Hausdorff space X. It is well known (see [1, p. 198]) that in C(X) the sum of two z-ideals is a z-ideal and the sum of two prime ideals is a prime ideal.

L. Gillman and C. W. Kohls have remarked [2, p. 401] that the proofs of these assertions seem to depend strongly on properties of βX , the Stone-Čech compactification of X. The purpose of this note is to present elementary proofs of both theorems without using any properties of βX .

To emphasize that βX plays no apparent role, we prove the assertions for ideals of subrings of C(X), provided these subrings are absolutely convex sublattices of C(X). The methods of [1] do not seem to yield the sum theorem for z-ideals in such subrings.

2. PRELIMINARIES

An ideal I of a commutative ring R is said to be *semiprime* in R if, for each $x \in R$, we have that $x \in I$ whenever $x^2 \in I$. It is well known (see [1, p. 31]) and easy to prove that the semiprime ideals of a commutative ring are precisely the intersections of prime ideals.

A subring \mathcal{A} of a lattice-ordered ring R is said to be absolutely convex in R if $x \in \mathbb{R}$, $y \in \mathcal{A}$, and $|x| \leq |y|$ imply $x \in \mathcal{A}$. For the remainder of this note, let \mathcal{A} denote some absolutely convex subring of C(X).

We remark that if f is an element of \mathcal{A} , then |f| is an element of \mathcal{A} , since $|(|f|)| \leq |f|$.

We denote by Z(f) the set of all $x \in X$ such that f(x) = 0.

LEMMA 2.1. A prime ideal P in \mathcal{A} is absolutely convex in \mathcal{A} .

Proof. Let $f \in \mathcal{A}$, $p \in P$, and suppose that $|f| \leq |p|$. Define g as in 5.5 of [1]; that is, let

$$g = \begin{cases} 0 & \text{on } Z(p), \\ \frac{f^2}{|p|} & \text{on } \sim Z(p). \end{cases}$$

Then g is easily seen to be continuous, and the inequality

$$|g| \le \frac{|f| \cdot |f|}{|p|} \le |f|$$

Received December 16, 1969.

This work was done while the author was on a NASA graduate fellowship.

Michigan Math. J. 17 (1970).