MONTGOMERY-SAMELSON COVERINGS ON SPHERES

William Reddy

1. INTRODUCTION

In this note, we study maps $f: M \to N$ from a compact manifold onto a compact manifold. Such a map is called a *Montgomery-Samelson covering* if $f \mid (M - B_f)$ is a covering map onto $N - fB_f$ and $f \mid f^{-1}fB_f$ is a homeomorphism onto fB_f , where B_f is the set of points of M at which f is not a local homeomorphism. Furthermore, we assume that dim $B_f \le n - 2$ and that the Čech homology groups of B_f are finitely generated. For the rest of this note, f denotes such a map. All spaces, except B_f , are manifolds unless exceptions are explicitly noted. S^n denotes the n-sphere, and f (f (f) is the degree of f are prove the following results.

THEOREM 1. If $f: S^n \to S^n$ satisfies the requirements above, then B_f is an (n-2)-dimensional homology sphere, modulo each prime dividing d.

This theorem answers a question raised by H. Hopf [5, paragraph 3] and E. Hemmingsen [3, p. 328].

THEOREM 2. If f: $M \to S^n$ is a Montgomery-Samelson covering and fB_f is a trivially knotted p-sphere in S^n , then p=n-2, the manifold M is a topological sphere, and f is the (n-1)-fold suspension of a d-to-1 covering map of S^1 on S^1 .

We adapt to the setting of codimension zero some techniques that P. L. Antonelli devised in his work on Montgomery-Samelson fiberings [1], [2]. The proof of Theorem 1 uses a special homology analogous to that of P. A. Smith [7].

2. SPECIAL HOMOLOGY

PROPOSITION. Let $f: M \to N$ be a Montgomery-Samelson covering. Let p be some prime dividing d. Let H denote Čech homology with coefficients in Z_p (the integers modulo p). Then there exist graded Z_p -modules $H^{\tau}(M)$, $H^{\tau}(M, B_f)$, $H^{\sigma}(M)$, and $H^{\sigma}(M, B_f)$ such that

(a) for each m, there exist exact sequences

$$H_{m+1}^{\sigma}(M, B_f) \rightarrow H_m^{\tau}(M, B_f) \oplus H_m(B_f) \rightarrow H_m(M)$$

and

$$\operatorname{H}^\tau_{m+1}(M,\; \operatorname{B_f}) \;\to\; \operatorname{H}^\sigma_m(M,\; \operatorname{B_f}) \bigoplus \operatorname{H}_m(\operatorname{B_f}) \;\to\; \operatorname{H}_m(M) \ ,$$

and

(b) $H_{\rm m}^{\sigma}(M,\,B_{\rm f})$ is the homomorphic image of $H_{\rm m}(N,\,B_{\rm f})$.

Proof. Part (a) of this theorem is proved in [4]. The homomorphism of part (b) is induced at the chain level in the simplicial case if to each simplex s in (N, B_f) ,

Received February 5, 1969.

Supported in part by Army Research Office-Durham grant ARO-D-31-124-G892,S2.

Michigan Math. J. 17 (1970).