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1. INTRODUCTION

Let X denote a locally convex Hausdorff (topological vector) space over the
reals R. Let X* denote the dual of X, and write <x, x*> in place of x*(x) for
x € X and x* € X*,

A multivalued mapping T: X — X* is called a monotone operator if
(1.1) (x-y,x¥-y*) >0

whenever x* € T(x) and y* € T(y). It is called a maximal monotone operator if, in
addition, the graph of T, in other words, the set

(1.2) {(x, x*)| x* € T(x)} C X x X*,

is not properly contained in the graph of any other monotone operator T': X — X*,
It is said to be locally bounded at x if there exists a neighborhood U of x such that
the set

(1.3) ) = U {1(y)| y € U}
is an equicontinuous subset of x*. (of course, if X is a Banach space, then the

equicontinuous subsets of X* coincide with the bounded subsets.)

In the case where X is a Banach space, it follows from a result of T. Kato [7]
that a monotone operator T: X — X* is locally bounded at a point x if x is an in-
terior point of the set

(1.4) D(T) = {x € X| T(x) # p}

and T is locally hemibounded at x (in other words, for each u € X there exists an
€ > 0 such that the set

U {T(x+ru)| 0<2<e}

is equicontinuous in X*). Moreover, Kato showed in [6] that the assumption of local
hemiboundedness is redundant when X is finite-dimensional.

In this note, we establish the following more general result, which implies, among
other things, that the assumption of local hemiboundedness is redundant even when X
is an infinite-dimensional Banach space. (The abbreviations conv, int, and cl denote
convex hull, interior, and (strong) closure, respectively.)
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