AN ELEMENTARY PROOF OF THE FIXED-POINT THEOREM OF BROWDER AND KIRK

K. Goebel

1. INTRODUCTION

In [1] and [3], F. E. Browder and W. A. Kirk showed independently that a nonexpansive self-mapping of a nonempty, closed, convex set in a uniformly convex Banach space has a fixed point. Their proofs are similar, and both are based on Zorn's Lemma and other nonelementary theorems of functional analysis.

We shall give an elementary proof of this fixed-point theorem, using only the definition of uniform convexity and some basic theorems of topology and analysis.

2. NOTATION AND DEFINITIONS

Let B be a uniformly convex Banach space with norm $\| \|$ and zero element Θ . Let K be a nonempty, closed, bounded, convex subset of B, and suppose (without loss of generality) that $\Theta \in K$. Let d(X) denote the diameter of the set $X \subset B$, and set $a(X) = \inf \| x \|$. Finally, let $I_1 = (0, 1]$ and $I_2 = (0, 2]$.

The following definition of uniform convexity is equivalent to the classical one [2].

Definition 1. The Banach space B is called *uniformly convex* if there exists an increasing, positive function δ : $I_2 \to I_1$ such that the inequalities $\|x\| \le r$, $\|y\| \le r$, and $\|x - y\| \ge \epsilon r$ imply that

$$\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\| \leq (1-\delta(\epsilon))\mathbf{r} \quad (\mathbf{x},\,\mathbf{y}\,\in\,\mathbf{B}).$$

It is obvious that $\lim_{\epsilon \to 0} \delta(\epsilon) = 0$ and $\delta(2) = 1$. We denote the inverse of δ by η , and we observe that $\lim_{y \to 0} \eta(y) = 0$.

Definition 2. A transformation F: $K \to K$ is called nonexpansive if the inequality $\| \operatorname{Fx} - \operatorname{Fy} \| \leq \| x - y \|$ holds for all x and y in K. A transformation F is a contraction if there exists a constant k $(0 \leq k < 1)$ such that $\| \operatorname{Fx} - \operatorname{Fy} \| \leq k \| x - y \|$ for all x, y \in K.

3. THE THEOREM OF BROWDER AND KIRK

THEOREM. Every nonexpansive mapping $F: K \to K$ has at least one fixed point. LEMMA. If u, v, w are elements of B such that

$$\|u - w\| \le R$$
, $\|v - w\| \le R$, and $\|w - \frac{u + v}{2}\| \ge r > 0$,

Received February 10, 1969.