AN EXTENSION OF A THEOREM OF T. ANDÔ

D. Gaspar and A. Rácz

In [1], T. Andô proved the following result: Every commutative pair of contractions $\mathcal{F} = \{T_1, T_2\}$ in a Hilbert space H has a unitary dilation.

We recall that the pair $\mathscr{U}=\left\{U_1\,,\,U_2\right\}$ is a unitary dilation (in a Hilbert space $K\supset H$) for the pair \mathscr{T} if the U_j $(j=1,\,2)$ are unitary operators in K, $U_1\,U_2=U_2\,U_1$, and

$$PU_1^{n_1}U_2^{n_2}h = T_1^{n_1}T_2^{n_2}h$$
 $(n_1, n_2 \ge 0, h \in H),$

where P is the orthogonal projection of K onto H.

The aim of this note is to extend this theorem.

We say that a family $\mathscr{T} = \{T_1, \dots, T_p\}$ of linear bounded operators (in a Hilbert space H) is *cyclic commutative* if

(c)
$$T_1 T_2 \cdots T_p = T_p T_1 T_2 \cdots T_{p-1} = \cdots = T_2 T_3 \cdots T_p T_1$$
.

THEOREM 1. Let $\mathscr{T} = \{T_1, T_2, \cdots, T_p\}$ be a cyclic commutative family of contractions in the Hilbert space H. There exists a cyclic commutative family $\mathscr{V} = \{V_1, V_2, \cdots, V_p\}$ of isometries in a Hilbert space $K \supset H$, with the property that

(1)
$$PV_{i_1}^{n_1} \cdots V_{i_p}^{n_p} h = T_{i_1}^{n_1} \cdots T_{i_p}^{n_p} h \quad (n_j \geq 0, h \in H),$$

where $(i_1\,,\,i_2\,,\,\cdots,\,i_p)$ is an arbitrary permutation of $(1,\,2,\,\cdots,\,p)$, and where P is the orthogonal projection of K onto H.

Proof. Let $K = \ell^2(H)$; that is, let K be the space of sequences $\{h_i\}_{i=0}^{\infty}$ $(h_i \in H)$ such that $\sum_{i=0}^{\infty} \|h_i\|^2 < \infty$. For $j = 1, 2, \cdots$, p, we define $S_j \in \mathscr{L}(K)$ by the equation

$$S_{j}\{h_{0}, h_{1}, \dots, h_{n}, \dots\} = \{T_{j}h_{0}, 0, D_{T_{j}}h_{0}, 0, h_{1}, \dots, h_{n}, \dots\},$$

where $D_{T_{j}} = (I - T_{j}^{*}T_{j})^{1/2}$.

It is obvious that the S_i are isometries in K. We consider the products

$$s_1 s_2 \cdots s_p \{h_0, h_1, \cdots\}$$

$$= \{T_1 T_2 \cdots T_p h_0, D_{T_1} T_2 \cdots T_p h_0, 0, D_{T_2} T_3 \cdots T_p h_0, 0, \cdots, D_{T_{p-1}} T_p h_0, 0, \dots, D_{T_p h_0}, 0, \dots, D_{T_p h_0}, 0, \dots, D_{T_p h_0}, \dots, \dots \},$$

Received March 26, 1969.