A REMARK ON FREE MODULES

K. R. Mount

Suppose A is a commutative ring with identity, and A[x] is a polynomial ring in one indeterminate with coefficients in A. Suppose F is a free module over A[x] with a basis e_0 , ..., e_r . Corresponding to each element P of F, denote by $\{P\}$ the submodule of F generated by P. Set $P = \sum P_u e_u$ with

$$P_{u} = \sum_{v=0}^{R} p(u, v) x^{v}$$
 $(0 \le u \le r)$,

and assume that $Q_u = \sum_{v=0}^d q(u,v) x^v$ are r+1 polynomials, each of degree d, the coefficients q(u,v) being independent indeterminates. We shall denote by E(P,n;d) the matrix of the system of linear equations (in the variables q(u,v)) obtained by equating to zero the coefficients of the x^j $(0 \le j \le n+d)$ in the expression

 \sum (-1)^u P_u Q_u. The matrix E(P, rd; d - 1) is square. In this paper we prove the following proposition.

THEOREM. If the determinant of E(P, rd; d-1) is a unit in A (here rd denotes the maximum of the degrees of the P_{ij}) and if the A-module

$$[Ae_0 + \dots + Ae_r] / \{ \sum p(u, rd) e_u \}$$

is free, then the module F/ $\left\{ \sum Q_u e_u \right\}$ is free for each $\sum Q_u e_u$ such that $\sum (-1)^u Q_u P_u = 1$. Furthermore, if A is an integral domain, then F/ $\left\{ \sum P_u e_u \right\}$ is free.

We shall suppose throughout this paper that the rings discussed are commutative and have a unit. If $P = \sum P_u e_u$ is an element of F, we shall say that P has degree d if a polynomial of maximal degree occurring among the P_u has degree d. We shall refer to the matrix E(P, n; d) as the d-th eliminate of P, and we shall suppose that the columns of E(P, n; d) are indexed by the pairs (u, v) of integers with $0 \le u \le r$ and $0 \le v \le d$, while the rows are indexed by j $(0 \le j \le n + d)$. In case P has degree rd, the matrix E(P, rd; d) has (r+1)(d+1) columns and (r+1)d+1 rows; therefore, if A is a field, the dimension of the solution space of the equations $\sum P_u Q_u = 0$ (with deg $Q_u \le d$) is at least r.

Until we specify otherwise, we shall suppose that A is a field, and we shall denote by K an algebraically closed field of infinite degree of transcendence over A. We alter notation slightly to denote by F a free K[x]-module with basis e_0 , \cdots , e_r . Denote by F_d the K-vector subspace of F consisting of elements of degree at most d. Denote by $G(F_d; r)$ the Grassmann space of r-dimensional subspaces of F_d . If V is a vector space, then P(V) will denote the projective space consisting of the one-dimensional subspaces of V. We shall say that an element of $P(F_d)$ has degree t if a nonzero vector in that element has degree t.

Received March 8, 1968.

This work was supported in part by N.S.F. Grant No. GP-6853.