MINIMUM CONVEXITY OF A HOLOMORPHIC FUNCTION, II

J. E. McMillan

1. STATEMENT OF RESULTS

Let w = f(z) be a nonconstant holomorphic function defined in the open unit disc D. An arc at $e^{i\theta}$ is a curve $A \subset D$ such that $A \cup \{e^{i\theta}\}$ is a Jordan arc. Let A be an arc at $e^{i\theta}$, parametrized by z(t) ($0 \le t < 1$), and define a family \mathscr{H}_A as follows: $H \in \mathscr{H}_A$ if and only if H is a closed half-plane in the finite w-plane W and there exists a t_0 ($0 \le t_0 < 1$) such that $f(z(t)) \in H$ if $t_0 \le t < 1$. If $\mathscr{H}_A = \emptyset$, set

 $F_A = W$; otherwise, set $F_A = \bigcap H$, where the intersection is taken over all $H \in \mathcal{H}_A$. Note that if f(z) is bounded on A, then F_A is the convex hull of the cluster set of f(z) on A at $e^{i\theta}$. Our first result is the following improvement of an earlier theorem [5, Theorem 1].

THEOREM 1. For each $e^{i\theta}$ there exists an arc α at $e^{i\theta}$ such that $\mathbf{F}_{\alpha} \subset \mathbf{F}_{A}$ for each arc A at $e^{i\theta}$.

If $F_{\alpha} = \emptyset$, f(z) has the limit ∞ on α at $e^{i\theta}$, and, to be sure, in a rather special way. If $F_{\alpha} = \{a\}$, f(z) has the limit a on α at $e^{i\theta}$.

Write f(z) = u(z) + iv(z), where u(z) and v(z) are the real and imaginary parts of f(z). A real or complex-valued function g(z) defined in D is said to have the (finite or infinite) asymptotic value a at $e^{i\theta}$ provided there exists an arc at $e^{i\theta}$ on which g(z) has the limit a at $e^{i\theta}$. For each $e^{i\theta}$, we shall be concerned with the validity of the following proposition:

 $P(\theta)$: If u(z) and v(z) have the finite asymptotic values a and b, respectively, at $e^{i\theta}$, then f(z) has the asymptotic value a + bi at $e^{i\theta}$.

An immediate consequence of Theorem 1 is that for each $e^{i\theta}$, either f(z) has the asymptotic value ∞ at $e^{i\theta}$, or $P(\theta)$ holds. This result contains a theorem of Gehring and Lohwater [4]. We shall prove a considerably stronger theorem, which we proceed to state.

Let \mathscr{L} be the family of straight lines L in W such that $f(z) \notin L$ if f'(z) = 0. Note that for each L $\in \mathscr{L}$, f(z) is one-to-one on each component of the preimage $f^{-1}(L)$. Let \mathscr{L}^* be the family of all half-lines L* in W,

$$\label{eq:L*} \mathbf{L^*} \; = \; \left\{ \, \mathbf{w} + \rho \mathbf{e}^{\mathbf{i} \phi} \! : \, \rho \geq 0 \, \right\} \qquad (\mathbf{w} \; \epsilon \; \; \mathbf{W}, \; \, 0 \leq \phi < 2\pi) \, ,$$

such that $L^* \subset L$ for some $L \in \mathscr{L}$. A subset $\mathfrak S$ of the unit circumference C is defined as follows: $e^{i\theta} \in \mathfrak S$ if and only if there exists an arc at $e^{i\theta}$ that f(z) maps one-to-one onto some L^* in \mathscr{L}^* . Clearly, on such an arc f(z) has the limit ∞ at $e^{i\theta}$.

THEOREM 2. With the possible exception of at most countably many $e^{i\theta}$, $P(\theta)$ holds. Any exceptional $e^{i\theta}$ is in \mathfrak{S} .

Received August 1, 1968.

The author is an Alfred P. Sloan Research Fellow. This work was supported by the National Science Foundation (N.S.F. grant GP-6538).