SEMIFREE DIFFERENTIABLE ACTIONS OF S^1 ON HOMOTOPY (4k + 3)-SPHERES

Hsu-Tung Ku and Mei-Chin Ku

1. INTRODUCTION

We shall call an action of S^1 semifree if it is free outside the set F of fixed points. It is well-known that if S^1 acts semifreely on a homotopy (4k+3)-sphere Σ^{4k+3} with fixed point set F of codimension 4, then the orbit space has a natural differentiable structure and is a homotopy (4k+2)-sphere. In this paper, we study the semifree differentiable actions of S^1 on homotopy (4k+3)-spheres $(k \ge 2)$, the fixed point sets consisting of the homotopy (4k-1)-spheres. The only complete result in this direction is the following theorem of Montgomery and Yang [7, Theorem 3].

THEOREM. On any homotopy 7-sphere, there are infinitely many differentiably distinct, semifree, differentiable actions of the circle group S^1 , each having S^3 as the fixed point set.

The following five theorems are immediate consequences of the main theorem.

THEOREM 1. If there exists a semifree differentiable action of S^1 on a homotopy (4k+3)-sphere Σ^{4k+3} , and if its fixed point set is a homotopy (4k-1)-sphere Σ^{4k-1} and its orbit space is a homotopy (4k+2)-sphere Σ^{4k+2} , then there exist infinitely many differentiably distinct, semifree, differentiable actions of S^1 on Σ^{4k+3} with fixed point set Σ^{4k-1} and orbit space Σ^{4k+2} .

THEOREM 2. Every homotopy sphere Σ^{4k+3} in $\operatorname{b} P_{4k+4}$ admits infinitely many differentiably distinct, semifree, differentiable actions of S^1 with fixed point sets of codimension 4. For example, let Σ^{4k+3}_M and Σ^{4k-1}_M be the Milnor spheres of dimensions 4k+3 and 4k-1, respectively. Then, for each integer $n \geq 1$, the homotopy sphere $n \Sigma^{4k+3}_M$ admits infinitely many differentiably distinct, semifree, differentiable actions of S^1 with fixed point set $n \Sigma^{4k-1}_M$. (For the notation $\operatorname{b} P_n$, see [5, p. 510].)

THEOREM 3. There exist infinitely many differentiably distinct, semifree, differentiable actions of S^1 on S^{4k+3} with fixed point set S^{4k-1} and orbit space S^{4k+2} .

THEOREM 4. (i) For each homotopy sphere Σ^7 in $4\theta_7$, there exist infinitely many differentiably distinct, semifree, differentiable actions of S^1 on S^{11} with fixed point set Σ^7 .

- (ii) On each homotopy sphere Σ^{11} in $2\theta_{11}$, there are infinitely many differentiably distinct, semifree, differentiable actions of S^1 with orbit space S^{10} .
- (iii) On each homotopy sphere in $4\theta_{11}$, there are infinitely many differentiably distinct, semifree, differentiable actions of S^1 with fixed point set S^7 and orbit space S^{10} .

Received May 22, 1968.

This work was supported by National Science Foundation Grant GP-7952X.