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1. INTRODUCTION

Gugenheim [1] showed in 1953 that an n-dimensional polyhedron unknots piece-
wise linearly in Euclidean k-space Ek if k > 2n + 2. For piecewise linear mani-
folds, this result can be improved upon by one dimension—Zeeman’s unknotting
theorem [11, Theorem 24] includes the fact that every connected, closed, piecewise
linear n-manifold (n > 2) unknots piecewise linearly in E22t1  ag well as the fact
that every l-connected, closed, piecewise linear n-manifold (n > 3) unknots in E2™
The principal object of the present paper is to establish results of this sort for a
larger class of polyhedra that includes all polyhedral homology manifolds, and hence
all triangulated, closed, topological manifolds.

We say that the polyhedron X strongly unknots in EX if, given two imbeddings f
and g of X into EX which agree on a subpolyhedron Y of X, there exists an am-
bient isotopy of EK which transforms f into g, while leaving pointwise-fixed the
image of Y. We prove that an n-dimensional polyhedron X (n > 2) strongly unknots
in E2n+l if HR(X - p) = 0 for each point p € X (Theorem 3). It follows that every
compact, connected polyhedral homology n-manifold (n > 2) strongly unknots in
E2ntl | This result is then used to prove that if M is either a connected, orientable
polyhedral homology n-manifold (n # 2) with H; (M) = 0, or a compact triangulated
topological n-manifold (n # 2) with nonempty boundary, then M unknots in E2n
(Theorem 5 and Corollary 5, respectively).

The proofs of these results make use of Zeeman’s unknotting theorem, and they
hinge upon the following question. If the n-dimensional polyhedron X collapses to
the subpolyhedron Y, and Y unknots in Ek, is it true that X also unknots in EX? It
is always true if k > 2n (Lemma 2), but it is generally false if k < 2n. However, in
the critical case k = 2n, it is true provided that X satisfies a certain local unknotting
condition (Theorem 4). The proof of Theorem 4 is based on the work of Lickorish [3]
on the piecewise linear unknotting of cones.

2. DEFINITIONS AND BASIC FACTS

The subset X of a Euclidean space E™ is called a polyhedron if there exists a
finite simplicial complex K in E® such that |K| = X. The complex K is then called
a triangulation of X. The map f of the polyhedron X into a Euclidean space is
piecewise linear if the triangulation K can be chosen so that f is linear on each
simplex of K.

A piecewise linear set is a subset Y of a Euclidean space such that each point
of Y has a neighborhood (in Y) whose closure is a polyhedron. A map of the piece-
wise linear set Y into a Euclidean space is piecewise linear if its restriction to
each subpolyhedron of Y is piecewise linear. Throughout this paper, we shall work
within the category of piecewise linear sets and maps.
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