ON THE BOUNDARY BEHAVIOR OF CONFORMAL MAPS

D. Gaier and Ch. Pommerenke

1. INTRODUCTION AND SUMMARY

Let f be schlicht in |z| < 1, and suppose that $c = \lim_{x \to 1-0} f(x) \neq \infty$ exists. Then $f(z) \to c$ as $z \to 1$ in any Stolz angle, hence also as $z \to 1$ in some domain G that is tangential at z = 1 (by this we mean that G contains every Stolz angle in a sufficiently small neighborhood of z = 1). In other words,

(1)
$$f(z) \rightarrow c \quad \text{as } z \rightarrow 1 \ (z \in G),$$

and as a consequence

Note, however, that G depends on f. George Piranian raised the following question: Does there exist a domain G tangential at z=1 that is *independent* of f and for which (1) or (2) holds. For example: Does (1) or (2) always hold for $G = \{|z-1/2| < 1/2\}$?

Our answer is negative in both cases.

THEOREM 1. Let $\{z_p\}$ be any sequence with $|z_p|<1$ such that $z_p\to 1$ and $\arg{(z_p-1)}\to \pi/2$ (p $\to\infty$). Then there exists a function f that is bounded and schlicht in |z|<1, for which $\lim_{x\to\,1-0}\,f(x)$ exists but $\{f(z_p)\}$ diverges.

THEOREM 2. Let G be any subdomain of |z| < 1 that is tangential at z = 1. Then there exists a function f, schlicht in |z| < 1, for which $\lim_{x \to 1-0} f(x) \neq \infty$ exists but f(G) has infinite area.

2. PRELIMINARY RESULTS

It will be more convenient to work in the half-plane $\Re z>0$ than in the disk |z|<1. So we assume that $\{z_p\}$ is a sequence with $\Re z_p>0$ and $z_p\to 0$, $\arg z_p\to \pi/2$ $(p\to\infty)$.

Let 0 < h < 1, and let D be a simply connected domain in the half-plane u > h of the w = u + iv-plane that is symmetric with respect to the real axis, contains the point w = 1 and some rectangle $\{h < u < h + a, |v| < 1\}$. For $0 < \epsilon < 1$, let D_{ϵ} consist of the rectangle $R = \{0 < u < h, -4 < v < 4\}$ and of D, the two domains being connected by an opening of width 2ϵ ; that is, let

$$D_{\epsilon} = R \cup (h - i\epsilon, h + i\epsilon) \cup D$$
.

Let the schlicht function $w = f_{\varepsilon}(z)$, normalized by the conditions $f_{\varepsilon}(0) = 0$ and $f_{\varepsilon}(1) = 1$, map the half-plane $\Re z > 0$ onto D_{ε} .

Received October 8, 1966.