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For any positive integer ¢ and any integer a relatively prime to g, let

Y(x; q, a) = 2 A(n),
nS x
n=a(mod q)

where A(n) is the arithmetical function which is log p if n is a power of a prime p
and 0 otherwise. The prime number theorem for arithmetic progressions, in the
form which Walfisz deduced from Siegel’s result on L-functions, states that if

q < (log x)N for each fixed N, then

X

-CvV log X)
#(q)

(1) w(x; q, a) = + O(xe

for some positive constant C depending on N.

In an important recent paper [1], Bombieri has investigated the behaviour of the
error term in this theorem as q varies, up to x1/2(log x)-B for some fixed posi-
tive B. He defined

E(x, q) = max |Y(x; q, a) - x/#(q)|, E*(x, q) = max E(y, q),
a Y_<_X

and he proved in his Theorem 4 that for any fixed positive A there exists a positive
constant B such that, if X < x1/2(1og x)-B, then

X

2 EMx, q) K ——.
a <X 4 (log x)*

(We use Vinogradov’s notation << to indicate an inequality with an unspecified con-
stant factor.) Bombieri’s proof was based on a general theorem of the ‘large sieve’
type (his Theorem 3), but it employed also a whole range of methods and techniques
from analytic number theory. In particular, the crucial step was the proof of a
density theorem on the zeros of L-functions.

The object of the present paper is to establish another result on the average of
the error term

U(x; q, a) - x/¢(q) ;

this result can be deduced very simply from a general large sieve theorem similar
to Borr]lbieri’s Theorem 3, which we have proved elsewhere [2, Corollary 2 to Theo-
rem 4].

Received Mayll(), 1966, ,
H. Halberstam gratefully acknowledges support from the National Science
Foundation.

485



