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Michael I. Rosen

Introduction. Let K be a field of characteristic zero, and G a group. It has
been conjectured that the group algebra K[G] is semisimple, in other words, that
the Jacobson radical of K[G] is zero. If K has elements that are transcendental
over the field Q of rational numbers, then K|[G] is indeed semisimple (see Amitsur
[1]). For the case where K is algebraic over Q, only partial results are known.
For example, if G is abelian or G/C is locally finite (C being the center of G),
then the conjecture is true (see [1], [4], [5]). We shall give new proofs of these re-
sults, and we shall verify the conjecture for a much larger class of groups.

By a linear representation p of a group G we shall mean a homomorphism from
G to a finite-dimensional linear group over some field. G is said to be 7esidually
linear if for every g € G (g # e) there exists a linear representation p such that
p(g) is not the identity. Our main result is the following.

THEOREM A. If every finitely generated subgroup of G is residually linear,
then K[G] is semisimple.

In particular, the result applies to any linear group. Clearly, the property of
being residually linear is inherited by subgroups. By the Peter-Weyl theorem, a
compact group is residually linear. This gives the following result.

COROLLARY. LetH be a subgroup of a compact group. Then K[H] is semi-
simple. )

The limitations of our methods will be shown in Section 3, where we prove the
following proposition.

THEOREM B. Let G be an infinite, finitely genevated, simple group. Then G
has no nontrivial linear representations over any field.

Graham Higman [2] has shown that there exist groups satisfying the hypotheses
of Theorem B.

1. LEMMA 1.1. Let S be a ving, and {Ii} _a collection of two-sided ideals.
Suppose S/1; is semisimple for all i, and that ,ani = (0). Then S is semisimple.

Proof, If S/I]-L is semisimple, I; is the intersection of the maximal left ideals

that contain it. Thus n!»Ii = (0) implies that the intersection of a certain collection
of maximal left ideals is (0). This proves the lemma.

LEMMA 1.2. Let @ ={ Ni} be a collection of normal subgroups of G. Suppose
that for every finite subset ¥ of G thatl does not contain e, there exists an N € Q
that does not meet F. Let R be a ving, and suppose R[G/N] is semisimple for all
N € Q. Then R[G] is semisimple.
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