ON THE MONOTONICITY OF THE ZEROS OF TWO POWER SERIES

Eduard Wirsing

1. In the preceding paper, Peyerimhoff considers the functions \mathbf{f}_K and \mathbf{g}_K defined by the equations

$$f_K(z) = \sum_{n=0}^{\infty} (n+1)^K z^n$$
 and $g_K(z) = \sum_{n=0}^{\infty} (1 - c^{n+1})^K z^n$ $(0 < c < 1)$

in the unit circle, and by analytic continuation in C^* , the complex plane with a cut from 1 to ∞ along the positive real axis. In particular, he shows that these functions have exactly k zeros $(k < \kappa \le k+1)$ in C^* , and that the zeros are all negative and simple. His proof, as well as certain numerical calculations, indicate that the zeros are monotone functions of κ . For the sake of a better understanding of the functions f_K and g_K , it seems worthwhile to investigate this question. A proof that the two zeros of f_K nearest to the origin and the first zero of g_K are monotonic was communicated to me by A. Peyerimhoff. In this paper we shall show that all zeros of f_K and g_K are monotonically increasing functions of κ .

2. Let us consider f_{κ} first. We denote the zeros by $\xi_{i}(\kappa)$, with

$$0>\xi_1(\kappa)>\cdots>\xi_k(\kappa).$$

From the paper of Peyerimhoff we take the relation

(1)
$$\xi_{i+1}(\kappa+1) < \xi_i(\kappa) < \xi_i(\kappa+1) \quad (1 \le i < \kappa).$$

Since the $\xi_i(\kappa)$ are simple and $f_{\kappa}(0) = 1 > 0$,

$$\operatorname{sgn} f_{K}^{1}(\xi_{i}(\kappa)) = (-1)^{i-1}.$$

From the relation

$$\frac{\mathrm{d}\xi_{\mathbf{i}}(\kappa)}{\mathrm{d}\kappa} = -\frac{\partial f_{\kappa}(\xi_{\mathbf{i}}(\kappa))}{\mathrm{d}\kappa} / f_{\kappa}'(\xi_{\mathbf{i}}(\kappa))$$

it will follow that $\frac{d}{d\kappa} \xi_i(\kappa) > 0$, when we have shown that

(2)
$$\operatorname{sgn} \frac{\partial f_{\kappa}(\xi_{i}(\kappa))}{d\kappa} = (-1)^{i}.$$

From the definition of f_K we see that

Received January 14, 1966.