MULTIPLICATIONS ON SO(3)

C. M. Naylor

1. INTRODUCTION

A multiplication on a space X (with base point *) will be defined to be a map $\mu\colon X\times X\to X$ such that $\mu(x,*)=\mu(*,x)=x$ for all x. Two multiplications μ_1 and μ_2 will be said to be homotopic if μ_1 is homotopic to μ_2 relative to $X\vee X$. The problem of enumerating the homotopy classes of multiplications that a given space may possess has been studied by James [3] for spheres, and by Arkowitz and Curjel [1] for finite CW-complexes. We shall prove the following theorem.

THEOREM 1.1. There exist precisely 768 distinct homotopy classes of multiplications on SO(3).

2. RESTATEMENT OF THE PROBLEM

SO(3) is homeomorphic to 3-dimensional real projective space P^3 . We use K to denote the reduced product $P^3 \wedge P^3 = P^3 \times P^3/P^3 \vee P^3$. By [1], P^3 has as many multiplications as there are elements of [K, P^3], the set of homotopy classes of base-point-preserving maps from K to P^3 ; since K is simply connected, the latter is clearly equivalent to [K, S^3].

The space K has a standard CW-structure (see Section 5). If we write $K^{(n)}$ for the n-skeleton, then K is obtained from $K^{(5)}$ by attaching one 6-cell by means of a map of its boundary $S^5 \xrightarrow{h} K^{(5)}$. By [5], the following is an exact sequence of groups (we write Σ for suspension):

$$[S^5, S^3] \stackrel{h^*}{\leftarrow} [K^{(5)}, S^3] \leftarrow [K, S^3] \leftarrow [S^6, S^3] \stackrel{\sum h^*}{\leftarrow} [\Sigma K^{(5)}, S^3] \leftarrow \cdots$$

Since $[S^6, S^3] \simeq \pi_6(S^3) \simeq Z_{12}$, Theorem 1.1 is a consequence of the following three propositions.

PROPOSITION 2.1. $h^* = 0$.

PROPOSITION 2.2. $\Sigma h^* = 0$.

PROPOSITION 2.3. $[K^{(5)}, S^3]$ has order 2^6 .

3. PROOFS OF PROPOSITIONS 2.1 AND 2.2

Proposition 2.1 asserts that gh is null-homotopic for each g: $K^{(5)} \to S^3$. Denote $K/K^{(2)}$ by L, and the natural projection $K \to L$ by p. Then the following implies 2.1.

PROPOSITION 3.1. Let $\tilde{g}: L^{(5)} \to S^3$ be any map. Then $\tilde{g}ph \sim *$.

Received April 23, 1965.

This research was partially supported by NSF grant GP-4069.

The author thanks Prof. H. Samelson for many helpful suggestions.