A RADICAL FOR NEAR-RING MODULES

James C. Beidleman

The theory of various radicals for near-rings has been discussed by Betsch [1],
Deskins [3], and Laxton [7]. It is our purpose here to study a radical for near-ring
modules which, when restricted to near-rings with identity, coincides with the
radicals defined by Betsch and Laxton.

In the second section we show that if J(M) is the radical of a module M over a
near-ring R, then J(M/J(M)) = 0. Also, if A is a submodule of M and J(M/A) = 0,
then J(M) Cc A. These results were first obtained by Betsch and Laxton in the spe-
cial case of a near-ring with identity.

In the third section we introduce the concepts of small and strictly small sub-
modules. If the radical J(M) of a near-ring module M is small (or strictly small),
then J(M) is the intersection of all maximal submodules (or maximal R-subgroups).
Furthermore, J(M) is the sum of all small submodules of M if and only if every
submodule of M generated by a finite subset of J(M) is small.

In the fourth section we restrict our attention to near-ring modules M that
satisfy the descending chain condition on submodules. I the radical is the zero sub-
module, then M is a finite direct sum of minimal submodules. Let M be a finitely
generated R-module. The radical J(M) of M is small if and only if every maximal
submodule of M is maximal as an R-subgroup.

1. FUNDAMENTAL DEFINITIONS

Definition 1. A near-ring R is a system with two binary compositions, addition
and multiplication, such that

(i) the elements of R form a group R’ under addition,
(ii) the elements form a semigroup under multiplication,
(iii) x(y + z) = xy + xz, for all x, y, z € R,
(iv) 0-x = 0, where O is the additive identity of R* and x is an element of R.

In particular, if R contains a multiplicative semigroup S whose elements generate
R and satisfy the condition

(v) x+y)s=xs+ys forall x,ye R and s € S,
then R is called a distributively genevated (d.g.) near-ring.

The most natural example of near-rings is given by the set of identity-preserving
mappings of an additive group G (not necessarily abelian) into itself. If the mappings
are added by adding images, and multiplication is iteration, then the system (R, +, -)
is a near-ring. The near-ring R is called the near-ring associated with G.
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