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1. INTRODUCTION

Let ¢ and m denote the space of absolutely convergent series and the space of
bounded sequences, respectively. Let A denote an infinite matrix defining a series-
to-series transformation that preserves absolute convergence of series, and let £,
denote its absolute summability field. We prove a number of results that relate with
one another the concepts of perfectness, reversibility, and type M*. We also prove
some theorems giving conditions for absolute consistency of two matrix methods and
for the existence of matrices A with the property that if f € ¢}, (the dual space of
£p), then there exists a matrix B such that ¢, C fg and B(x) = f(x) for x € (4.
Finally, we extend to the class of perfect matrices a theorem that Macphail [2]
proved for reversible matrices, and we demonstrate the existence of a nonreversible
perfect matrix. Our results belong largely to a class of theorems due to Mazur (3],
Mazur and Orlicz [4], Wilansky [6], and Zeller [9].

2. MATRIX MAPPINGS

Let A = (a,;) and x = {x_} be a matrix and a sequence of complex numbers,
respectively. We write formally

(1) Yo = Ap(x) = %ankxk’

and we say that the sequence x (and the corresponding series Ek (xy - x3_y) with
x_j = 0) is absolutely summable if each series in (1) converges and Z)n Iyn| < o,
We say the method is an £-¢ method provided En Iynl < o whenever En |xn| < oo,
and that it is absolutely regular provided in addition En Yn = En X, whenever

En Ixn| < «, Regarding these concepts the following theorem was proved by Knopp
and Lorentz [1] and by Mears [3].

THEOREM (Knopp, Lorentz, Mears). The malrix A defines an (-4 method if
and only if

(2) 2 Iankl <M (M independent of k).
n

The method A is absolutely vegulay if and only if in addition to (2) it satlisfies the
condition
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