SOME CHARACTERIZATIONS OF THE LAGUERRE AND HERMITE POLYNOMIALS

Waleed A. Al-Salam

1. Recently Carlitz [1] proved the following representation for the Laguerre polynomials (for its definition see [2, p. 200]):

(1.1)
$$L_n^{(\alpha)}(x) = (n!)^{-1} \prod_{j=1}^n (xD - x + \alpha + j) \cdot 1$$

where D = d/dx.

Let b_n (n = 1, 2, 3, ...) be a sequence of numbers, and let

(1.2)
$$p_{n}(x) = \prod_{j=1}^{n} (xD + x + b_{j}) \cdot 1 \qquad (n = 1, 2, 3, \dots),$$
$$p_{0}(x) = 1.$$

Obviously $p_n(x)$ is of degree exactly n. We propose here to prove the following theorem.

THEOREM 1. If the set $\{p_n(x)\}$, defined by means of (1.2), is a set of orthogonal polynomials [2, p. 147], then $p_n(x)$ is the nth Laguerre polynomial.

Proof. Since the set $\{p_n(x)\}$ is simple and orthogonal and since the coefficient of x^n in $p_n(x)$ is one, there is a three-term recurrence relation [2, p. 151]

(1.3)
$$p_{n+1}(x) = (x + B_n)p_n(x) + C_n p_{n-1}(x) \qquad (n \ge 0),$$

$$p_{-1}(x) = 0, p_0(x) = 1, C_n \ne 0.$$

We see from (1.2) and (1.3) that

(1.4)
$$p_{n+1}(x) = (xD + x + b_{n+1})p_n(x) = (x + n + b_{n+1})p_n(x) + (xD - n)p_n(x)$$
$$= (x + B_n)p_n(x) + C_n p_{n-1}(x).$$

Since $(xD - n)p_n(x)$ is a polynomial of degree n - 1, it follows that

(1.5)
$$B_n = n + b_{n+1}$$

and

(1.6)
$$(xD - n)p_n(x) = C_n p_{n-1}(x).$$

We also get from (1.2) and (1.3), respectively, the relations

Received May 28, 1963.