SUMS OF NORMAL FUNCTIONS AND FATOU POINTS

Peter Lappan

Let C and D denote the unit circle and open disk, respectively. If f(z) is a complex valued function defined in D, the outer angular cluster set f(z) at a point $e^{i\theta}$ in C is denoted by $C_A(f, e^{i\theta})$ [6, p. 69], while the radial-cluster set of f(z) at $e^{i\theta}$ is denoted by $C_R(f, e^{i\theta})$. The non-Euclidean hyperbolic distance between points z and z' in D is denoted by $\rho(z, z')$ [3, Chapter 2].

Bagemihl and Seidel have shown that every normal holomorphic function in D has a Fatou point [1, Theorem 4], and, in fact, that the set of Fatou points is dense on C [2, Corollary 1]. However, the author has shown that the sum of two normal holomorphic functions need not be normal [5, Theorem 4]. It is our present purpose to show that the sum of two normal holomorphic functions need not have a Fatou point.

We first prove a lemma concerning a Blaschke product.

LEMMA. Let E be a prescribed countable set in C. Then there exists a Blaschke product B(z) such that

- (1) for every $e^{i\theta} \in E$, B(z) has infinitely many zeros on the radius to $e^{i\theta}$; and
- (2) there exist sequences $\left\{R_n\right\}$ and $\left\{S_n\right\}$ of real numbers, with $0 < R_n < S_n < R_{n+1} < 1$, such that $\left|B(w_n)\right| \to 1$ for every sequence $\left\{w_n\right\}$ with $R_n < \left|w_n\right| < S_n$.

Proof. Let $a_n=1$ - 2⁻ⁿ (n = 1, 2, \cdots); and let $\left\{e^{i\theta_n}\right\}$ be an enumeration of the elements of E, with every element of E appearing infinitely often in the enumeration.

We shall now locate the zeros $\{z_n\}$ of the Blaschke product. Set $z_1 = \frac{1}{2}e^{i\theta_1}$. Let R_1 be chosen with $|z_1| < R_1 < 1$ such that

$$\left|\frac{\mathbf{z}-\mathbf{z}_1}{1-\overline{\mathbf{z}}_1\mathbf{z}}\right| > \mathbf{a}_1 \quad (|\mathbf{z}| > \mathbf{R}_1).$$

Now choose S_1 with $R_1 < S_1 < 1$, and then choose $z_2 \in D$ such that $|z_2| > S_1$, arg $z_2 = \theta_2$, and

$$\frac{z_2 - z}{1 - \bar{z}_2 z} > a_2$$
 (|z| < S₁).

We now proceed inductively. Assume z_1, z_2, \dots, z_n ; R_1, R_2, \dots, R_{n-1} ; and S_1, S_2, \dots, S_{n-1} have been chosen such that

(3)
$$\arg z_j = \theta_j \quad (1 \le j \le n),$$

(4)
$$|z_{j}| < R_{j} < S_{j} < |z_{j+1}|$$
 $(1 \le j \le n - 1)$,

(5)
$$\left| \frac{z_{j+1} - z}{1 - \overline{z_{j+1}} z} \right| > a_{j+1} (|z| < S_j; 1 \le j \le n - 1),$$

Received November 9, 1962.