AN EXISTENCE THEOREM FOR PERIODIC SOLUTIONS OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

H. W. Knobloch

1. INTRODUCTION

We consider a system of ordinary differential equations

$$\dot{x} = f(x, t)$$
 $(x = (x_1, \dots, x_n), f = (f_1, \dots, f_n)),$

where the f_i are continuous and satisfy a (local) Lipschitz-condition for $(x,\,t)$ in some region $\Omega\times I$. Here Ω is assumed to be an open region in Euclidean n-space R^n , and I is the unit interval $0 \le t \le 1$, notation which we shall keep throughout this paper. A solution $\xi(t) = (\xi_1(t), \dots, \xi_n(t))$ of the differential equations is called *peri*odic, if it satisfies the boundary conditions $\xi_i(0) = \xi_i(1)$ (i = 1, ..., n). In the theorem that is formulated below, we give conditions in terms of the functions fi that guarantee the existence of periodic solutions in subregions of $\Omega \times I$. In order to make the nature of these conditions clearer we introduce them here in a more geometric way. Let us assign to each solution of the differential equation the curve in Rⁿ⁺¹ with the parametric representation ($\xi_1(t)$, ..., $\xi_n(t)$, t) and with the orientation given by increasing t. Let Z be a subregion of $\Omega \times I$, and let T be a sufficiently smooth hypersurface that belongs to the boundary of Z. We shall say that T is of uniform type with respect to Z if there are no two solution curves which intersect with T in such a way that one curve arrives from the interior and the other arrives from the exterior of Z. In the notation of Ważewski, this means T does not contain points de sorlie (points of egress) as well as points d'entrée (points of ingress); see [3, p. 280], [1, p. 179].

We now consider a region $Z \subseteq \Omega \times I$ that is bounded by cylindrical and plane hypersurfaces S_0 , S_1 , T_i and T_i^* (i = 1, ..., n). The hypersurface S_0 is

$$\left\{\,(x,\,t)\colon t=0,\;\alpha_{\,\mathbf{i}}\leq x_{\mathbf{i}}\leq\beta_{\,\mathbf{i}}\,\right\}$$
 ,

and S_1 is

$$\left\{\,(\mathbf{x},\,t)\colon \mathbf{t}\,=\,\mathbf{1},\,\,\alpha_{\mathbf{i}}\,\leq\,\mathbf{x_i}\,\leq\,\beta_{\mathbf{i}}\,\right\},\quad\text{where }\,\alpha_{\mathbf{i}}\,=\,\alpha_{\mathbf{i}}(\mathbf{0})\,=\,\alpha_{\mathbf{i}}(\mathbf{1}),\,\,\beta_{\mathbf{i}}\,=\,\beta_{\mathbf{i}}(\mathbf{0})\,=\,\beta_{\mathbf{i}}(\mathbf{1})\,.$$

The hypersurfaces T_i , T_i^* are defined by equations of the form $x_i = \alpha_i(t)$, $x_i = \beta_i(t)$, respectively, with $\alpha_i(t) \leq \beta_i(t)$ and $\alpha_i(0) = \alpha_i(1)$, $\beta_i(0) = \beta_i(1)$ ($i = 1, \cdots, n$). Our theorem can be stated as follows: If $T_i \cup T_i^*$ is of uniform type ($i = 1, \cdots, n$), then there exists a periodic solution of the system $\dot{x} = f(x, t)$ inside Z. It should be noted that if all T_i , T_i^* are of the same uniform type, then our statement is an immediate consequence of Brouwer's fixed point theorem. If, for example, there are no points of egress on $\bigcup_{i=1}^n T_i \cup T_i^*$, any solution that starts at some point $(x, 0) \in S_0$ cannot leave Z except at some point $(x, \bar{x}) \in S_1$. The mapping $x \to \bar{x}$ is

Received April 12, 1962.

The author is a Fulbright grantee for the academic year 1961-62 and is visiting The University of Michigan.