CELLULARITY OF SETS IN PRODUCTS

M. L. Curtis and D. R. McMillan

1. INTRODUCTION

There is no known factorization $R^n = X \times Y$ of euclidean n-space R^n in which neither factor is locally euclidean, although factorizations are known in which one factor fails to be locally euclidean (see [2] and [1]). There is a class of nonlocally euclidean spaces, which we call "pinched spaces" (see Section 5), and it seems likely that if X and Y are pinched spaces, then $X \times Y$ is euclidean space. We cannot show this, but, as a corollary to our main theorem, we have the conclusion that $X \times Y$ is a homotopy manifold.

The crucial question turns out to be whether certain sets are cellular (as defined by M. Brown [3]), and our main result is the following.

THEOREM 1. Let M^m and N^n be combinatorial manifolds, and let A and B be absolute retracts in Int M and Int N, respectively. If $\sup\{m-\dim A, n-\dim B\} \geq 2$, then $A\times B$ is cellular in $M\times N$. In fact, if $M\times N$ is triangulated as a combinatorial manifold, then $A\times B$ is the intersection of combinatorial (m+n)-cells in $M\times N$.

In the above context, $A \times B$ will be said to be *combinatorially cellular* in $M \times N$.

2. NESTED SEQUENCES OF MANIFOLDS

We collect here some results needed in proving Theorem 1.

(i) Let A be an absolute retract in Int M, and let U be an open neighborhood of A. Then there exists a finite combinatorial manifold H, with nonempty boundary, such that

$A \subset Int H \subset H \subset U$.

Such an H may be obtained as a small regular neighborhood of the closed simplicial neighborhood of A in a sufficiently fine subdivision of M.

(ii) Let $A \subset Int \ H$ as in (i). Then there exists a neighborhood V of A such that $V \subset Int \ H$ and the inclusion i: $V \to H$ is null-homotopic.

Since H is an absolute neighborhood retract, there exists an $\epsilon > 0$ with the property that if f and g are maps of a space K into H such that $\rho(f(k), g(k)) < \epsilon$ for each $k \in K$, then f and g are homotopic in H. Let r be a retraction of H onto A, and choose V to be an open set such that $A \subset V \subset \text{Int H}$ and $\rho(x, r(x)) < \epsilon$ for each x in V. Since A is contractible, V is the required neighborhood of A.

(iii) There exists a sequence $\left\{\,H_{i}\right\}$ of finite combinatorial $\,m\text{-manifolds}$, with nonempty boundaries, such that $\,H_{i+1}\subset\,\operatorname{Int}\,H_{i},\,\,A=\bigcap_{\cdot}H_{i},$ and each inclusion

 $H_{i+1} \rightarrow H_i$ is homotopically trivial. This follows immediately from (i) and (ii).

The following result is proved in [8].

Received May 17, 1962.