ON AN INVARIANT PROPERTY OF SURFACE INTEGRALS

Togo Nishiura

Our basic tool is the following proposition.

LEMMA. If $\alpha=(a_{ij})$ is an $n\times n$ orthogonal matrix, and $\beta=(b_{\xi\eta})$ denotes the $\binom{n}{2}\times\binom{n}{2}$ matrix whose elements $b_{\xi\eta}$ are the determinants of all 2×2 submatrices of α , then β is also an orthogonal matrix.

We give a proof in Section 2. In Section 3, we use this result to extend the theorems of L. H. Turner [7] concerning the invariance of Cesari's surface integral under orthogonal linear transformations.

1. NOTATION

Let E_n (n \geq 2) be the n-dimensional Euclidean space with an orientation.

If n is a positive integer (n \geq 2), then Ω_n^2 denotes the set of all ordered pairs $\xi=(\xi^1,\,\xi^2)$ of integers such that $1\leq \xi^1<\xi^2\leq n$. We shall assume that Ω_n^2 is lexiographically ordered.

By the mapping P_n^{ξ} ($\xi \in \Omega_n^2$) we mean the projection

$$P_n^{\xi}(x) = (x^{\xi^1}, x^{\xi^2})$$
 $(x = (x^1, x^2, \dots, x^n) \in E_n)$

of E_n onto the hyperplane E_n^{ξ} .

Let (T,A): x=T(w) $(w \in A)$ be any continuous mapping from an admissible set $A \subset E_2$ into E_n $(n \geq 2)$. Denote by (T^ξ,A) $(\xi \in \Omega_n^2)$ the $\binom{n}{2}$ plane mappings $(P_n^\xi T,A)$ from the admissible set $A \subset E_2$ into $E_2^\xi \subset E_n$. Let $\mathfrak S$ be any set of non-overlapping closed simple polygonal regions π in A. If π^* is the oriented boundary of π , then T^ξ maps π^* into an oriented closed curve C_π^ξ in E_2^ξ . For any point $x \in E_2^\xi$, let $O(x; C_\pi^\xi)$ be the topological index of x with respect to C_π^ξ . Then $O(x; C_\pi^\xi)$ is Borel measurable and integrable if (T,A) is cBV. We write

$$u(T^{\xi}, \pi) = (E_2^{\xi}) \int O(x; C_{\pi}^{\xi})$$
 and $u(T, \pi) = \left[\sum u^2(T^{\xi}, \pi) \right]^{1/2}$,

where Σ ranges over $\xi \in \Omega_n^2$. (See [1] for the definitions of admissible sets, topological index, and cBV.)

Received January 10, 1962.