FACTORS OF N-SPACE

Kyung Whan Kwun

1. INTRODUCTION

Bing [2] showed that a certain locally bad 3-gm is a cartesian factor of E⁴. Curtis and Wilder [5] showed that the space of Bing, although pathological, is nevertheless locally like E³ in the sense of homotopy. Raymond [8] proved that every 3-dimensional cartesian factor of E^4 is necessarily locally like E^3 in the sense of homology. Later, Rosen [9] used Bing's construction to show that there exists a nowhere euclidean cartesian factor of E4. However, it follows easily from our result [7] that his space is a homotopy manifold. It was Curtis [4] who first showed that there exists a cartesian factor of E4 that is not a homotopy manifold, and who thus answered in the negative a question raised in the original draft of [7]. By constructing a certain pseudo-isotopy of Eⁿ⁺¹, by the methods of [2], Andrews and Curtis [1] recently showed that if one shrinks an arc in Eⁿ to a point and then multiplies by the line, then the resulting space is E^{n+1} . In view of [10], this proposition enables us to obtain results similar to those of [9], for all dimensions greater than 2. Furthermore, we can construct the space so that no open subset of it is locally like Eⁿ in the sense of homotopy, and we can replace the construction and argument of [9] by simpler ones. In particular, our construction is similar to one in our earlier work [6]. We also remark that the technique of the present work gives the affirmative answer to a question raised in [6] with the proviso that the construction should be careful.

2. A CERTAIN ARC IN En

The following lemma provides us with an arc that we shall use later.

LEMMA 1. For each $n \geq 3$, there exists an arc P in E^n such that for each open set U containing P there exists a simple closed curve C in U - P which is not deformable to a point (that is, whose inclusion map is not null-homotopic) in E^n - P.

Remark. The arc that we shall use must have a property much stronger than non-simple connectedness of the complement. In the following proof of Lemma 1, we assume the reader's familiarity with the construction of Blankinship [3]. The proof mainly describes what particular set of circles should be avoided in constructing the n-cell E of Blankinship. We use the notation of [3].

Proof of Lemma 1. Let y be the simple closed curve on Bd T that is not deformable to a point in E^n - A. Let y_α be the image of y under the global homeomorphism f_α , where $\alpha = i_1 i_2 \cdots i_j$ ($i_p \le k$) denotes any array of appropriate positive integers, and $f_\alpha = f_{i_1} f_{i_2} \cdots f_{i_j}$ as in [3]. Let Y be the sum of the sets y_α . We obtain an arc as described in Lemma 1 by avoiding Y in constructing Blankinship's n-cell E and then applying his method.

207

Received October 25, 1961.

The present work was supported in part by the Air Force Contract AF 49(638)-774 through the University of Michigan.