asth 12th - LSA 1recti 2-63 2place.

RETRACTS AND EXTENSION SPACES FOR PERFECTLY NORMAL SPACES

Byron H. McCandless

Let Q be a class of topological spaces, and n a nonnegative integer. A topological space Y is called an n-AR(Q) [n-ANR(Q)] if

- (a) Y is in Q and
- (b) whenever Z is in Q and Y is imbedded as a closed subset of Z with $\dim (Z Y) \le n$, then Y is a retract of Z [Y is a retract of some neighborhood of Y in Z].

Y is called an AR(Q) [ANR(Q)] if it satisfies (a) and the statement (b') obtained from (b) by omitting "with dim (Z - Y) \leq n." A space Y is called an n-ES(Q) [n-NES(Q)] if

- (a) Y is in Q and
- (b) whenever X is in Q, C is a closed subset of X with dim $(X C) \le n$, and f: $C \to Y$ is a continuous mapping, then f has a continuous extension over X [over some neighborhood of C in X] with respect to Y.

Finally, Y is called an ES(Q) [NES(Q)] if Y satisfies (a) and the statement (b') obtained from (b) by omitting "with dim (X - C) \leq n." In the above definitions, dim X means the dimension of X defined in terms of finite open coverings.

A normal space X is called *perfectly normal* if every closed subset of X is a G_{δ} . Every metric space is perfectly normal, and every perfectly normal space is countably paracompact [1, p. 221]. Some justification for our interest in the class of perfectly normal spaces is provided by the following theorem of M. Katětov [7].

THEOREM. Let B be a separable Banach space, K a convex subset of B, and C a closed set of type G_{δ} in a normal space X. Then every continuous mapping $f: C \to K$ has a continuous extension $F: X \to K$ with

dim
$$F(X - C) \le \min[\dim C + 1, \dim f(C) + 1, \dim X]$$
.

The object of this paper is to prove the following five theorems.

THEOREM 1. Let Y be a separable metric space. Then the following implications hold between the statements listed below: (a) is equivalent to (d) and (b) is equivalent to (c); moreover, (b) implies (a) and (c) implies (d).

- (a) Y is LC^{n-1} .
- (b) Y is an n-ANR (perfectly normal).
- (c) Y is an n-NES (perfectly normal).
- (d) If X is perfectly normal, dim $X \le n$, and C is closed in X, then any continuous f: $C \to Y$ has a continuous extension over some neighborhood of C in X with respect to Y.

Received April 19, 1961.