ON THE ALGEBRAIC CLOSURE OF A PLANE SET

Z. A. Melzak

1. Let Z be a set of complex numbers. Where convenient, Z will be identified in the natural way with the corresponding subset of the Euclidean plane E. We shall always assume that $\{-1, 0, 1\} \subset Z$; otherwise, Z is arbitrary. Define $Z_1 = Z$,

$$Z_{n+1} = \left\{ z: \sum_{j=0}^{N} a_j z^j = 0, \{a_0, \dots, a_N\} \subset Z_N, N \ge 1, a_N \ne 0 \right\} \quad (n = 1, 2, \dots).$$

Then Z_1, Z_2, \cdots is an ascending sequence of sets, and we call the set

$$Z_{\omega} = \lim_{n \to \infty} Z_n = \bigcup_{n=1}^{\infty} Z_n$$

the algebraic closure of Z. It is clearly the smallest set that contains Z and is algebraically closed in the usual sense. In this note we shall study some properties of the sets Z_{ω} and of the relation of Z_{ω} to Z. Thus, we consider, in a sense, the algebraic closure apart from any algebraic structure.

If A denotes a set, an A-equation is an algebraic equation in a single unknown and with all coefficients in A. Any topological terms refer to the usual topology of E, and any group-theoretic ones to the ordinary multiplication of complex numbers.

2. LEMMA 1. Z_{ω} - $\{0\}$ is an Abelian group containing for every positive integer n every n-th root of every one of its elements.

This follows directly from the definition of Z_{ω} and from the observation that if $z_1, z_2 \in Z_{\omega}$, then the equations $z_1 z_2 - 1 = 0$, $z_1 + z_2 = 0$, $z_1 - z_2 = 0$, and $z_1 - z_1 = 0$ are Z_{ω} -equations.

THEOREM 1. Z_{ω} is dense in E.

By Lemma 1, Z_{ω} contains the group U of all roots of unity. It is easily verified that Z_{ω} contains two positive numbers, a and b, such that $\log a/\log b$ is irrational. For instance, $z^2-z-1=0$ is a Z_{ω} -equation, so that $a=(1+5^{1/2})/2\in Z_{\omega}$; also, $z^2-z-a=0$ is a Z_{ω} -equation, and therefore $b=[1+(3+2\cdot 5^{1/2})^{1/2}]/2\in Z_{\omega}$. Suppose now that $\log a/\log b$ is rational. Then $a^p=b^q$ for some positive integers p and q, which implies that $(3+2\cdot 5^{1/2})^{1/2}=r+5^{1/2}s$, with r and s rational. This implies further that $r^2-3rs+5s^2=0$, which leads to r=s=0, and this is a contradiction.

It follows that the module $\{n \log a + m \log b\}$, where n and m range independently over the rational integers, contains numbers of arbitrarily small absolute value, and hence is dense on the real line. Therefore the group S, generated by a

Received May 29, 1961; in revised form, October 5, 1961.

The author wishes to thank the referee for his critical remarks, and the Canadian Mathematical Congress for a grant at the 1961 Summer Research Institute, held at Queen's University, Kingston, Ontario, at which the present work was done.