HOLOMORPHIC FUNCTIONS, OF ARBITRARILY
SLOW GROWTH, WITHOUT RADIAL LIMITS

G. R. Mac Lane

By the well-known theorem of Fatou, if f(z) is holomorphic and bounded in
|z| < 1 then {(z) possesses radial limits almost everywhere. This result was ex-
tended by Nevanlinna to meromorphic functions of bounded characteristic T(r) [4,
p. 189]. A natural question raised by Lohwater and Piranian [2, p. 16] is this: if
the condition of boundedness of T(r) be relaxed to the requirement that T(r) < q(r),
where q(r) — « slowly enough, can one still conclude that some radial limits must
exist? Bagemihl, Erdos and Seidel [1, Theorem 7] have given an example of a kolo-
movphic function without a radial limit for which T(r) = O((1 - r)"®). Lohwater and
Piranian [2] gave an example of a meromorphic function without radial limit for
which T(r) = O(-log (1 - r)). See also Noshiro [5, p. 90]. Mac Lane [3] gave an
example of a meromorphic function, of arbitrarily slow growth, without asymptotic
value (and hence without radial limit). The purpose of the present note is to derive
a similar result for holomorphic functions. The method of proof and the precise
statement of the result are different in the holomorphic case, since a holomorphic
function must possess at least one asymptotic value (along some curve, not neces-
sarily along some radius). For that reason the construction used in our example for
meromorphic functions is completely inapplicable.

Let C_, and C, be two fixed disjoint compact simple arcs in ICI < 1, neither of
which contains the origin, and such that each radius of |C | < 1 intersects both C_,
and C,. For example, we may use the two arcs 27 < arg { < 47 and 6r < arg £ < 87
of the spiral ICI =1- (arg &)~

LEMMA 1. Tkhere exisis a function ¢(£), holomovphic in [g’] < 1, and a constant
M > 1 such that
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Pyoof. The three sets {0}, C_, and C, may be enclosed in simply-connected
neighborhoods, D,, D_,, D,, whose closures are disjoint. Define the function ¢,(¢),

holomorphic in D, U D_, UD,, by

$o(§) =0 (£ €Dg),  ¢o(§) =-3 (§ €D_y), ¢,({) =3 (£ €D,).

Then, by Runge’s theorem (see for example [6, p. 15]), there exists a polynomial
P(¢) approximating ¢,() well enough so that
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