ON METRIC PROPERTIES OF COMPLEX POLYNOMIALS

Ch. Pommerenke

Let

$$f(z) = \prod_{\nu=1}^{n} (z - z_{\nu}) = z^{n} + \cdots$$

This paper deals with metric properties of the lemniscate domain

$$E = \{ |f(z)| \le 1 \}$$
 .

It will give (at least partial) answers to some problems raised by Erdös, Herzog and Piranian [2]. Also, some metric properties of continua of capacity 1 will be derived.

Section 1 treats the diameters of the components of E. After some counter-examples, a lower bound for the largest diameter will be given, for the case where $|z_{\nu}| \le r \le 1$.

In Section 2 it will be proved that E contains a disk of radius const·n⁻⁴, if $z_{\nu} \in [-2, +2]$.

In Section 3 it will, for instance, be shown that $d \leq 4 \cdot 2^{-1/n}$ and $\Lambda < 74n^2$, where d is the measure of the projection of E onto the real axis and Λ is the perimeter of E.

Section 4 deals first with some necessary or sufficient conditions for the connectedness of E, and then with some consequences of connectedness.

The last section is concerned with the convexity of E and two related problems.

1. THE DIAMETERS OF THE COMPONENTS OF E

There is a close connection between lemniscate domains E and compact sets F with cap F = 1. Here cap F denotes the (logarithmic) capacity of F, also called the transfinite diameter of F. Every lemniscate domain $E = \{ |f(z)| \le 1 \}$ generated by $f(z) = z^n + \cdots$ has capacity 1 [4], and conversely the following approximation theorem holds [5]:

Let F be a closed bounded set with cap F=1. Given any $\epsilon>0$ and $\eta>0$, there exists a ρ $(1<\rho<1+\eta)$ and a polynomial $f(z)=z^n+\cdots$ such that the lemniscate $\left\{ \left| f(z) \right| = \rho^n \right\}$ contains F in its interior and is contained in an ϵ -neighborhood of F.

We shall now apply the approximation theorem to some problems of Erdös, Herzog and Piranian [2]. Let E have the components E_j , of diameters d_j . Then Problem 8 asks whether

$$\sum$$
 max (0, d_j - 1)

Received November 26, 1960.