SUMMABILITY AND ASSOCIATIVE INFINITE MATRICES

H. R. Coomes and V. F. Cowling

We consider the sequence-to-sequence matrix transformations y = Ax, where $A = (a_{nk})$, $x = \{x_k\}$, $y = \{y_n\}$,

$$y_n = A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k$$
 (n, k = 0, 1, 2, ...).

It is known that a matrix A is conservative, that is, Ax converges whenever x does, if and only if $||A|| = \sup_{k=0}^{\infty} |a_{nk}|$ is finite, $\lim_{n} \sum_{k=0}^{\infty} a_{nk}$ exists, and $\lim_{n} a_{nk}$ exists for $k=0,1,2,\cdots$. If A, B, C \cdots are conservative matrices with elements a_{nk} , b_{nk} , c_{nk} , \cdots , the column limits will be denoted by a_k , b_k , c_k , \cdots . A conservative matrix A is said to be co-regular if

$$\lim_{n \to k} \sum_{k} a_{nk} - \sum_{k} a_{k} \neq 0.$$

Otherwise it is said to be *co-null*. Let e and e^n (n = 0, 1, 2, ...) be the sequences defined respectively by $e_k = 1$ (k = 0, 1, ...) and by $e_k^n = \delta_{nk}$ (n, k = 0, 1, 2, ...). Let $\Delta = \{e^n : n = 0, 1, 2, \cdots\}$, and let Φ be the set consisting of the elements of Δ together with e. Let $H(\Delta)$ and $H(\Phi)$ be the linear hulls of Δ and Φ , respectively. The terms "basis" and "biorthogonal" will be used as in [1, pp. 106, 110].

We shall say that a matrix A is associative if B(Ax) = BA(x) for all matrices B with ||B|| finite and all x in the summability field C_A . Clearly a matrix A is associative if and only if

$$\sum_{n} t_{n} \sum_{k} a_{nk} x_{k} = \sum_{k} \sum_{n} t_{n} a_{nk} x_{k} \quad \text{for all } x \in C_{A} \text{ and all } \{t_{n}\} \in (\gamma),$$

where (γ) denotes the set of sequences $\{t_n\}$ such that $\Sigma_{n=0}^{\infty} \ \left|t_n\right|$ converges. We shall show that if A is replaceable, that is, if there exists a regular matrix D such that C_D = C_A , then A is associative if and only if Φ is a basis for C_A .

Bases for the space C_A have been studied by Wilansky [3] and MacPhail [2]. A conservative matrix A is said to have $maximal\ inset$ if $\Sigma a_k x_k$ converges for all x in C_A . A is said to have $propagation\ of\ maximal\ inset$ (PMI) if $\Sigma b_k x_k$ converges for all x in C_A whenever B is a matrix such that $C_B = C_A$. Wilansky has shown that if A is a triangular co-regular matrix, then Φ is a basis for C_A if and only if A has PMI. MacPhail has shown that this statement is true if "triangular" is replaced by "reversible." We shall show that if A is an arbitrary co-regular matrix, then Φ is a basis for C_A if and only if A has PMI. Also, we shall give necessary and sufficient conditions that Δ be a basis for C_A .

LEMMA 1. Let A be a co-regular matrix. $\overline{H(\Phi)} = C_A$, that is, $H(\Phi)$ is dense in C_A , if and only if, for each sequence $\left\{b_n\right\}$ such that $\left.\Sigma\left|b_n\right|$ is convergent and

Received September 6, 1960.