DENSE SUBSETS IN THE SPACES 1p

Dragisă Mitrović

It is well known that the space l_p is defined, for $1 \le p < \infty$, as the linear space of all sequences $x = \{\xi_k\}$ of scalars for which $\Sigma_{k=1}^{\infty} \mid \xi_k \mid^p$ is finite. If we set $\|x\| = (\Sigma_{k=1}^{\infty} \mid \xi_k \mid^p)^{1/p}$, we get a Banach space. Every linear continuous functional x^* in l_p is determined in one and only one way by a sequence $x^* = \{\alpha_k\}$, with

$$\sum_{k=1}^{\infty} |\alpha_k|^q < \infty$$
 $\left(\frac{1}{p} + \frac{1}{q} = 1\right)$,

by means of the relation $x^*(x) = \sum_{k=1}^{\infty} \alpha_k \xi_k$.

If S is a subset of l_p , and if the only linear continuous functional which vanishes on S is the null functional, then S determines a dense subspace of l_p (see [1, p. 57], [5, p. 9], and [6, p. 61]).

Inspired by M. V. Subba Rao's paper [6], we obtain, by means of Dirichlet series, a number of propositions concerning dense linear subsets in l_p .

PROPOSITION 1. Let $x = \left\{ \xi_k \right\} \in l_p, \ p \geq 1, \ \xi_k \neq 0 \ \text{for every } k; \ \text{let} \left\{ s_n \right\} \ \text{be a sequence of complex numbers } (s_n \to \infty \ \text{as } n \to \infty) \ \text{lying in the region } \Re s > 0, \ \left| \arg s \right| \leq \phi < \pi/2, \ \text{and let} \ x_n = \left\{ \xi_k \, e^{-\lambda_k s_n} \right\} \ (n = 1, 2, \cdots), \ \text{where}$

$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_k \to \infty$$
 $(k \to \infty)$.

Then the linear manifold determined by $\{x_n\}$ is dense in l_p .

Proof. Let $x^* = \{\alpha_k\}$ be a linear continuous functional in l_p such that

(1)
$$x^*(x_n) = \sum_{k=1}^{\infty} \alpha_k \xi_k e^{-\lambda_k s_n} = 0 \quad (n = 1, 2, \dots).$$

Since

$$\sum_{k=1}^{\infty} |\alpha_k \xi_k| \leq \left(\sum_{k=1}^{\infty} |\xi_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{\frac{1}{q}} < \infty,$$

the Dirichlet series $\Sigma_{k=1}^{\infty} \alpha_k \, \xi_k \, e^{-\lambda_k s}$ is absolutely and uniformly convergent in the closed half-plane $\Re s \geq 0$. Hence it represents an analytic function

(2)
$$f(s) = \sum_{k=1}^{\infty} \alpha_k \, \xi_k \, e^{-\lambda_k s} \qquad (s = \sigma + it)$$

which is certainly holomorphic in the half-plane $\sigma > 0$. Furthermore, from (1) we see that the function f(s) has infinitely many zeros s_1, s_2, \cdots lying in an angle

Received November 25, 1960.