ON GROUP ALGEBRAS OF p-GROUPS

Gerald Losey

1. INTRODUCTION

Let G be group, and K a field of characteristic $p \neq 0$. The group algebra Γ_G of G over K consists of all formal sums $\Sigma \alpha(g) g$, where $g \in G$, $\alpha(g) \in K$, and $\alpha(g) = 0$ for all but finitely many g. The operations + and \cdot are defined in the natural way. Denote by Δ_G the set of all those sums $\Sigma \alpha(g) g$ for which $\Sigma \alpha(g) = 0$; Δ_G is an ideal of Γ_G , generally called the fundamental ideal. Jennings [2] and Lombardo-Radice [3] have both shown that Δ_G is nilpotent if G is a finite p-group. In this paper, we intend to show that the converse is also true. These results will then be applied to the case where G is a locally finite p-group.

The situation where the fundamental sequence $\triangle_G \supseteq \triangle_G^2 \supseteq \triangle_G^3 \supseteq \cdots$ terminates in a finite number of steps at an ideal different from zero appears to be more difficult to analyze. Here, we shall only consider the case where G has exponent p and K is Z_p , the ring of integers modulo p.

2. NILPOTENCE OF THE FUNDAMENTAL IDEAL

LEMMA 2.1. The elements g - 1 for all $g \neq 1$ in G are a basis for \triangle_G . If $(h_i)_{i \in I}$ is a set of generators for G, then the subalgebra of Γ_G generated by the elements $h_i^{\pm 1}$ - 1 is exactly \triangle_G . In fact, the left ideal of Γ_G generated by the elements h_i - 1 is \triangle_G .

Proof. If $\Sigma \alpha(g) g \in \Delta G$, then $\Sigma \alpha(g) = 0$ and therefore

$$\sum \alpha(g) g = \sum \alpha(g) g - \sum \alpha(g) = \sum \alpha(g)(g - 1).$$

Hence, the elements g-1 span \triangle_G . It is clear that they are linearly independent.

Let $(h_i)_{i \in I}$ be a set of generators for G, and let J be the subalgebra generated by all $h_{\bar{i}}^{\pm 1}$ - 1. Clearly, $J \subseteq \triangle_G$. If $g \in G$, then

$$g - 1 = h_{i(1)}^{\varepsilon(1)} \cdots h_{i(k)}^{\varepsilon(k)} - 1$$
,

where $\varepsilon(j) = \pm 1$. Applying the identity

$$XY - 1 = (X - 1) + (Y - 1) + (X - 1)(Y - 1)$$

to the right-hand side of this equation sufficiently often, we obtain a representation of g - 1 as a linear combination of products of the h_i^{ϵ} - 1. Hence g - 1 is in J, and hence $\triangle_G \subseteq J$. Therefore, $J = \triangle_G$.

Let Λ be the left ideal generated by the elements h_i - 1. Then

Received March 24, 1960.

This paper is based in part on the author's doctoral dissertation, University of Michigan, 1958.