DIFFERENTIABLE ISOTOPIES ON THE 2-SPHERE

James Munkres

Let Diff S^n denote the group of diffeomorphisms of degree +1 and of class C^r $(1 \le r \le \infty)$ carrying the unit n-sphere onto itself, topologized by requiring closeness of the maps and their partial derivatives through order r. A path in this space is called a *regular isotopy*; it is a map of the reals R into the space which is constant on the set $t \le 0$ and on the set $t \ge 1$. We say a path is *differentiable* if the induced map of $S^n \times R$ onto S^n is of class C^1 ; a differentiable path is also called a *differentiable isotopy*. If two maps are regularly isotopic, they are differentiably isotopic as well [2, Lemma 1.6].

The group Γ^{n+1} of Milnor and Thom is defined as a quotient group of the group $\pi_0(\mathrm{Diff}\ S^n)$ of path components of this space. The object of the present paper is to give an elementary proof that $\pi_0(\mathrm{Diff}\ S^2)$, and hence Γ^3 , vanishes. This result has since been generalized by Smale [3]. Interest in the group Γ^{n+1} stems from its close connection with the existence of distinct differentiable structures on manifolds; the fact that $\Gamma^3=0$, for example, implies the uniqueness theorem for differentiable structures on 3-manifolds [2]. The group $\pi_0(\mathrm{Diff}\ S^n)$ does not in fact depend on the choice of r; for simplicity we shall prove our result only in the case r=1.

1. Let $\mathcal{E}^{\mathbf{r}}(\mathbb{R}^m, \mathbb{R}^n)$ ($m \leq n$) denote the space of those embeddings of class $\mathbf{C}^{\mathbf{r}}$ of \mathbb{R}^m in \mathbb{R}^n which equal the inclusion map i outside some compact subset of \mathbb{R}^m ; it is topologized as was Diff \mathbb{S}^n . (The map i is defined by the equation

$$i(x_1, x_2, \dots, x_m) = (x_1, \dots, x_m, 0, \dots, 0).)$$

A *loop* in this space will be assumed to be based at i and to be constant for t near 0 and for t near 1. Every element ϕ of Diff Sⁿ is regularly isotopic to an element ϕ_1 which equals the identity in a neighborhood of the north pole [2, Lemma 8.1]; stereographic projection carries ϕ_1 into an element f of $\mathcal{E}^r(\mathbb{R}^n, \mathbb{R}^n)$. A path in $\mathcal{E}^r(\mathbb{R}^n, \mathbb{R}^n)$ is carried by the inverse of this projection into a path in Diff Sⁿ; hence our problem reduces to showing that $\pi_0(\mathcal{E}^1(\mathbb{R}^2, \mathbb{R}^2)) = 0$.

1.1. LEMMA. Let f_t be a differentiable loop in $E^2(R^1,\,R^2)$ which is homotopic to a loop in the subspace $E^2(R^1,\,R^1)$, the homotopy passing through differentiable loops. Then there exists a differentiable loop G_t in $E^1(R^2,\,R^2)$ such that for each t, G_tf_t maps R^1 into itself.

Proof. Given $g \in \mathcal{E}^2(\mathbb{R}^1, \mathbb{R}^2)$, there exists a neighborhood of g such that if g in this neighborhood, there exists a g diffeomorphism g of g which carries the set g(g) onto g onto g onto g diffeomorphism is obtained by sliding g of g along its normal lines onto g and leaving everything fixed outside a neighborhood of these sets. Because the maps are of class g there is no difficulty in carrying out this construction; details are left to the reader. Similarly, if g is a differentiable loop approximating closely enough the differentiable loop g, then the diffeomorphism g may be chosen to be a differentiable loop in g.

Received July 31, 1959; in revised form, June 23, 1960.

Presented to the American Mathematical Society August 26, 1958. This work was supported by contract AF 18(600)-1494.