ON SEQUENCES OF SUBORDINATE FUNCTIONS

Ch. Pommerenke

Let f(z) and g(z) be two functions regular in the disk |z| < 1. If there exists a function $\phi(z)$ that is regular in |z| < 1 and satisfies $|\phi(z)| < 1$ and $\phi(0) = 0$, such that

$$g(z) = f(\phi(z))$$

in |z| < 1, then g(z) is called *subordinate* to f(z) (see for instance [2, p. 163]). The condition implies that g(0) = f(0) and $|g'(0)| \le |f'(0)|$. The relation of subordination is transitive. We shall prove the following theorems:

THEOREM 1. Let the functions $f_n(z)$ be regular in |z| < 1, let $\alpha_n = f_n'(0)$ be positive, and let $f_n(z)$ be subordinate to $f_{n+1}(z)$. Then the condition

$$\alpha = \lim_{n \to \infty} \alpha_n < \infty$$

is necessary and sufficient in order that $\left\{f_n(z)\right\}$ converges uniformly in $\left|\,z\right| \leq r$ for every r < 1.

THEOREM 2. Let the functions $f_n(z)$ be regular in |z| < 1, let $\alpha_n = f_n'(0)$ be positive, and let $f_{n+1}(z)$ be subordinate to $f_n(z)$. Then the sequence $\{f_n(z)\}$ converges uniformly in $|z| \le r$ for every r < 1. The limit function is constant if and only if

$$\alpha = \lim_{n \to \infty} \alpha_n = 0$$
.

Remarks. 1. Note the difference in the assumptions: In Theorem 1 we assume that $f_n(z)$ is subordinate to $f_{n+1}(z)$, whereas in Theorem 2 we assume the reverse relationship.

- 2. In Theorem 1 we have $\alpha_{n+1} \geq \alpha_n$. Therefore either the limit α exists or $\alpha_n \to \infty$. In Theorem 2 we have $\alpha_{n+1} \leq \alpha_n$. Hence the limit α always exists and is nonnegative.
- 3. In Theorem 2, it is of course essential to assume that $f_n'(0)$ is real and nonnegative, as the example $f_n(z) = (-1)^n z$ shows.
- 4. Theorem 1 implies that if its hypothesis is satisfied and if $|f_n(z)| \le K$ in some neighborhood of z=0, then $|f_n(z)| \le M(r)$ in $|z| \le r$ for every r < 1. The functions $f_n(z) = e^{nz}$ give an example for Theorem 1 with $\alpha_n = n \to \infty$.

We need two lemmas. We denote by A the class of all functions $\phi(z)$ that are regular in |z| < 1 and satisfy the conditions $|\phi(z)| < 1$ and $\phi(0) = 0$.

LEMMA 1. Every function $\zeta=\varphi(z)$ of class A with $\varphi'(0)\geq\sigma>0$ maps the disk

Received October 26, 1959.