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1. INTRODUCTION

The formula
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will be proved under the conditions
R%({ - m+n) >0, R({-m-n)>1, R(m) > -1;
the functions P;™ and E under the integral sign are defined by the relations
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for a discussion of the E-functions, see [3, p. 352},

From formula (1), integration formulas involving many special functions (for

example, those of Bessel, Whittaker, Struve) can be deduced. The formulas thus ob-
tained provide information on the asymptotic behavior of the integrals for large values

of Hz|; for the asymptotic expansion of the E-functions is given by MacRobert [3, p.
358

, and the other functions that occur can be expressed in terms of ordinary gen-

eralized hypergeometric functions whose asymptotic expansion has been investigated

by several writers (Barnes [1], Wright [5], Meijer [4]).
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