ON SOLUTIONS OF THE EQUATION OF HEAT CONDUCTION

F. W. Gehring

1. INTRODUCTION

Suppose that u = u(x, t) is defined over some domain D in the xt-plane. We say that u is parabolic in D if u is of class C^2 and $u_t = u_{xx}$ in D. Parabolic functions have many properties in common with harmonic functions. In this paper we use analogues of well-known theorems on harmonic and subharmonic functions to obtain a uniqueness theorem and some representation theorems for functions which are parabolic in the infinite strip 0 < t < c.

We begin by introducing a class of subparabolic functions. For $x_1 < x_2$ and $t_1 < t_2$, let $R = R(x_1, x_2; t_1, t_2)$ denote the open rectangle bounded by the lines $x = x_1$, $x = x_2$, $t = t_1$, and $t = t_2$. Let S denote that part of the boundary for R which does not lie in the line $t = t_2$, and let w = w(x, t) denote any function continuous in a domain D. When $R \cup S \subset D$, we define the function $M_R w = M_R w(x, t)$ as follows:

$$\begin{cases} M_R \ w = w & \text{in } D - R, \\ \\ M_R \ w & \text{is parabolic in } R, \\ \\ M_R \ w & \text{is continuous at each point of } S. \end{cases}$$

Finally, we say that w is subparabolic in D if $w \le M_R$ w for each rectangle R $(R \cup S \subset D)$. (Compare [9].) When $P_0 = (x_0, t_0) \in R$, we have

(1.2)
$$M_R w(P_0) = \int_S G(P_0, Q) w(Q) dS,$$

where the integration is taken over S, where

(1.3)
$$\int_{S} G(P_0, Q) dS = 1,$$

and where

(1.4)
$$G(P_0, Q) > 0$$

for Q = $(\xi, \tau) \in S$ [6]. Excepting the corners, we have strict inequality in (1.4) if and only if $t_1 < \tau < t_0$.

If w is subparabolic in D, then w is subparabolic in each subdomain of D. If u is parabolic, then $|u|^p$ is subparabolic for $p \ge 1$. A function u is parabolic if and only if the functions u and -u are subparabolic. Finally, both the sum and the upper envelope of a finite number of subparabolic functions are subparabolic.

Received January 22, 1958.

Part of this work was supported by a Rackham Research Fellowship from the University of Michigan.