SOME UNSOLVED PROBLEMS

Paul Erdös

On November 16, 1957, Assumption University of Windsor sponsored a symposium for mathematicians from Ontario, Michigan, and Indiana. The symposium gave occasion for an informal lecture in which I discussed various old and new questions on number theory, geometry and analysis. In the following list, I record these problems, with the addition of references and of a few further questions.

A. NUMBER THEORY

1. It is known [35, Vol. 1, Section 58] that $\pi(2x) < 2\pi(x)$ for sufficiently large x. Is it true that

(1)
$$\pi(x + y) < \pi(x) + \pi(y)$$
?

Ungár has verified the inequality for $y \le 41$. Hardy and Littlewood [29, p. 69] have proved that

(2)
$$\pi(x + y) - \pi(x) < \frac{cy}{\log y}$$
.

In the same paper, they discuss many interesting conjectures. They put

$$\lim_{x\to\infty}\sup_{\infty}\left[\pi(x+y)-\pi(x)\right]=\rho(y),$$

and they conjecture that $\rho(y) > y/\log y$, and that perhaps $\pi(y) - \rho(y) \rightarrow \infty$ as $y \rightarrow \infty$.

Hardy and Littlewood deduce (2) by Brun's method. A very difficult conjecture, weaker than (1) but much stronger than (2), is that corresponding to each $\varepsilon > 0$ there exists a y_{ε} such that, for $y > y_{\varepsilon}$,

$$\pi(x + y) - \pi(\dot{y}) < (1 + \varepsilon)y/\log y$$
.

It has not yet been disproved that $\rho(y) = 1$ for all y. If $\rho(y) > 1$ for some y, then $\lim \inf (p_{n+1} - p_n) < \infty$.

2. About seventy years ago, Piltz [38] conjectured that, for each $\epsilon>0$, p_{n+1} - $p_n=O(n^\epsilon)$. Cramér conjectured [7, p. 24] that p_{n+1} - $p_n=O((\log n)^2)$. If

$$\lim \sup (p_{n+1} - p_n)/(\log n)^2 = 1$$
,

then, for each $\varepsilon > 0$, infinitely many of the intervals $[n, n + (1 - \varepsilon)(\log n)^2]$ contain no primes, but for $n > n_{\varepsilon}$, there is a prime between n and $n + (1 + \varepsilon)(\log n)^2$. The Riemann hypothesis implies that

$$\textbf{p}_{n+1}$$
 - $\textbf{p}_{n} < \textbf{n}^{\epsilon+1/2}$

[35, Vol. 1, p. 338]. Thus the old conjecture that there is always a prime between two consecutive squares already goes beyond the Riemann hypothesis.