AN EXAMPLE OF A FUNCTION WITH A DISTORTED IMAGE

F. Bagemihl

The analogy between measure and measurability on the one hand, and category and possession of the Baire property on the other, is well known (see, for example, [3, pp. 49, 63, 225] and [5, p. 26]); one aspect of it, dealing with rectilinear sections of a plane set, will concern us here.

We shall consider exclusively sets of points in the plane P. Denote by X the set of all real numbers, and by R the set of all positive real numbers. Then

$$P = \{(x, y) : x \in X, y \in X\}.$$

For every $x_0 \in X$, let $L_{x_0} = \{(x_0, y): y \in X\}$, and, for every $r \in R$, let

$$C_r = \{(x, y): x^2 + y^2 = r^2\}.$$

According to Fubini [1], if $E \subset P$ and E is (plane Lebesgue) measurable, then there exists a subset X_0 of X of (linear) measure zero such that, for every $x \in X - X_0$, the intersection $E \cap L_x$ is a measurable subset of L_x . If E is a subset of P of measure zero, then there exists a subset X_0 of X of measure zero such that, for every $x \in X - X_0$, the intersection $E \cap L_x$ is a subset of L_x of measure zero. According to Kuratowski and Ulam (see [4] or [3, pp. 223, 222]), if E is a subset of P that possesses the Baire property, then there exists a subset X_1 of X of first category such that, for every $x \in X - X_1$, the subset $E \cap L_x$ of L_x possesses the Baire property. If E is a subset of P of first category, then there exists a subset X_1 of X of first category such that, for every $x \in X - X_1$, the subset $E \cap L_x$ of L_x is of first category.

The converses of these results are false. If f(x) is a function of a real variable, the plane set $J(f) = \{(x, y): y = f(x), x \in X\}$ is called the (geometrical) image of the function f. Sierpiński has shown [6] that there exists a single-valued function whose image is not measurable, and Sierpiński and Zalcwasser have given an example (in [2, p. 85]) of a single-valued function whose image is not of first category and therefore [3, p. 229] does not possess the Baire property. Sierpiński has also proved [6] the existence of a nonmeasurable subset of P which intersects every (straight) line in at most two points.

Let $p \in P$ and $E \subset P$. We say that E is measurable at p if there exists a (circular, open) neighborhood N of p such that $E \cap N$ is a measurable subset of N; otherwise, E is said to be nonmeasurable at p. Similarly, E is of first category at p if there exists a neighborhood N of p such that $E \cap N$ is a subset of N of first category; otherwise, E is of second category at p.

THEOREM. There exists a function f(x) $(x \in X)$ possessing the following properties:

- (a) f and its inverse are single-valued,
- (b) f maps the set of real numbers onto itself,

Received December 30, 1957.