ON POWER SERIES, AREA, AND LENGTH

F. Bagemihl

Let C be the unit circle, and U the open unit disk in the complex plane. Denote by Φ the class of functions that are holomorphic in U and map every disk that is internally tangent to C onto a Riemann configuration of infinite area, and by Λ the class of functions that are holomorphic in U and map every rectilinear segment in U that terminates in a point of C onto a curve of infinite length. Lohwater and Piranian have established [1] the existence of functions in Φ of the form $\sum a_k z^k$ with $\Sigma |a_k| < \infty$. The first one of the two theorems which we shall prove implies that, in a certain sense, most functions of this form belong to Φ ; we are indebted to Karl Zeller for suggesting a demonstration that is more elementary than our original one. No function $\sum a_k z^k$ with $\sum |a_k| < \infty$ belongs to Λ , however, because such a function maps every radius of U onto a curve whose length is not greater than $\sum |a_k|$. Our second theorem asserts that, for every p>1, "most" functions of the form $\sum a_k z^k$ with $\sum |a_k|^p < \infty$ belong to Λ .

For $p \geq 1$, denote by \mathfrak{L}_p the Banach space of all complex sequences $\{a_k\}$ for which $\Sigma \, |a_k|^p < \infty$; $\|\{a_k\}\| = (\Sigma \, |a_k|^p)^{1/p}$. With the element $\{a_k\}$ of \mathfrak{L}_p , associate the function $\Sigma \, a_k \, z^k$. If, as $j \to \infty$, the elements $\{a_k^{(j)}\} \in \mathfrak{L}_p$ converge to $\{a_k\} \in \mathfrak{L}_p$, then the sequence of functions $\Sigma \, a_k^{(j)} \, z^k$ converges uniformly to $\Sigma \, a_k \, z^k$ on every compact subset of U; this well-known fact is used implicitly in proving below that certain sets, E_m and $E_m(n)$, are closed.

A convex region D is called a tangential domain, if it lies in U, the intersection of its closure and C is the point 1, and the only straight line through the point 1 that does not intersect D is the tangent to C. Let Φ_D be the class of functions that are holomorphic in U and, for every real θ , map the region $D_\theta = \{ze^{i\theta}\colon z\in D\}$ onto a Riemann configuration of infinite area. Piranian and Rudin have proved [2, Theorem 4] that for every tangential domain D there exists a function in Φ_D of the form $\Sigma\,a_kz^k$ with $\{a_k\}\,\in\mathfrak{L}_1$; let R_D be the set of all elements of \mathfrak{L}_1 whose associated functions belong to Φ_D . If the boundary of D has infinite curvature at the point 1, then $\Phi_D\subset\Phi$.

THEOREM 1. For every tangential domain D, R_D is a residual subset of 2₁.

Proof. For every natural number m, define E_m to be the set of those elements of \mathfrak{L}_1 whose associated functions do not map D_θ for every θ onto a Riemann configuration of area greater than m. Since C is compact, E_m is closed.

Suppose that P(z) is a polynomial and t>0. For any θ , let G_n $(n=2,3,4,\cdots)$ be the intersection of D_θ with the annulus 1-1/n<|z|<1-1/2n. Since D_θ is a tangential domain, the area of G_n is $g(n)/n^2$, where $g(n)\to\infty$ as $n\to\infty$; moreover, in G_n the modulus of the derivative of tz^n is greater than tn/e. Consequently, if n is sufficiently large, the function $P(z)+tz^n$ maps G_n , and hence D_θ for every θ , onto a Riemann configuration of area greater than m. Given $\epsilon>0$ and $\{a_k\}\in\mathfrak{L}_1$, choose K so large that $\Sigma_{k=K+1}^{\infty}|a_k|<\epsilon/2$, set $P(z)=\Sigma_{k=0}^Ka_kz^k$, let $t=\epsilon/2$, and take n to be greater than K and so large that, if $b_k=a_k$ $(k=0,1,\cdots,K)$, $b_k=\epsilon/2$ for k=n, and $b_k=0$ for all other nonnegative integers k, we have $\{b_k\}$ $\{\epsilon\}_1$ - $\{b_k\}$ $\{\epsilon\}_1$

Received May 21, 1957.