Unusual Generating Functions for Ultraspherical Polynomials

by

Fred Brafman

1. Introduction. A generating function equation for a set of polynomials $\{g_n(x)\}$ is an equation of type

(1)
$$G(x, t) = \sum_{n=0}^{\infty} A_n g_n(x) t^n$$
,

where the coefficients A_n do not involve either x or t but may depend on the index of summation n, parameters (if any) of the set $\left\{g_n(x)\right\}$, and numerical factors. In many classical generating functions, the A_n is made up of ratios and products of factorial functions $(\alpha)_n$, where by definition

(2)
$$(\alpha)_n = (\alpha + 1) \dots (\alpha + n - 1) = \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)}$$

for $n = 1, 2, 3, \dots$; $(\alpha)_0 = 1$ if $\alpha \neq 0$.

There has however been some interest paid to the case where the index of the factorial symbols making up A_n may be either n or $\left[\frac{n}{2}\right]$, the greatest integer in n/2. [1]

It is also obvious that some attention must be paid to the form permitted for G(x,t). One of the most useful forms is that G(x,t) consist of a finite sum of terms, each term of which is a product of a finite number of generalized hypergeometric functions,