Notre Dame Journal of Formal Logic
Volume VI, Number 3, July 1965

THE SUBSTITUTION SCHEMA IN RECURSIVE ARITHMETIC

R. D. LEE

In his paper Logic Free Formalisations of Recursive Arithmetic [1] R. L. Goodstein presents a formalisation of primitive recursive arithmetic in which the only axioms are explicit and recursive function definitions, and the rules of inference are the schemata
$\left(5 b_{1}\right)$
$\left(\mathrm{Sb}_{2}\right)$

$$
\frac{F(x)=G(x)}{F(A)=G(A)}
$$

$$
\begin{gathered}
A=B \\
\hline F(A)=F(B)
\end{gathered}
$$

$$
\begin{gather*}
A=B \tag{T}\\
A=C \\
\hline B=C
\end{gather*}
$$

where $F(x), G(x)$ are recursive functions and A, B, C are recursive terms, and the primitive recursive uniqueness rule

$$
\begin{equation*}
\frac{F(S x)=H(x, F(x))}{F(x)=H^{x} F(0)} \tag{U}
\end{equation*}
$$

where the iterative function $H^{x} t$ is defined by the primitive recursion $H^{0} t=t, H^{S_{x}} t=H\left(x, H^{x} t\right)$; in U, F may contain additional parameters.

In the same paper it is shown that the schema U may be replaced by

$$
\begin{equation*}
\frac{F(0)=0 \quad F(S x)=F(x)}{F(x)=0} \tag{E}
\end{equation*}
$$

if we take as axioms

$$
\begin{equation*}
a+(b \doteq a)=b+(a \doteq b) \tag{A}
\end{equation*}
$$

and, in place of the introductory equations for the predecessor function,

$$
\begin{equation*}
S a \doteq S b=a \doteq b \tag{P}
\end{equation*}
$$

This system is referred to as \mathbf{R}_{1}.

