Notre Dame Journal of Formal Logic Volume VI, Number 3, July 1965

THE SUBSTITUTION SCHEMA IN RECURSIVE ARITHMETIC

R.D. LEE

In his paper Logic Free Formalisations of Recursive Arithmetic [1] R. L. Goodstein presents a formalisation of primitive recursive arithmetic in which the only axioms are explicit and recursive function definitions, and the rules of inference are the schemata

(Sb₁)
$$\frac{F(x) = G(x)}{F(A) = G(A)}$$

$$\frac{A=B}{F(A)=F(B)}$$

 $(\mathbf{T}) \qquad A = B$

$$\frac{A = C}{B = C}$$

where F(x), G(x) are recursive functions and A,B,C are recursive terms, and the primitive recursive uniqueness rule

(U)
$$\frac{F(Sx) = H(x,F(x))}{F(x) = H^{x}F(0)}$$

where the iterative function $H^{x}t$ is defined by the primitive recursion $H^{0}t = t$, $H^{Sx}t = H(x, H^{x}t)$; in U, F may contain additional parameters.

In the same paper it is shown that the schema \boldsymbol{U} may be replaced by

(E)
$$\frac{F(0) = 0 \quad F(Sx) = F(x)}{F(x) = 0}$$

if we take as axioms

(A)
$$a + (b - a) = b + (a - b)$$

and, in place of the introductory equations for the predecessor function,

$$(P) \qquad Sa \stackrel{\cdot}{-} Sb = a \stackrel{\cdot}{-} b$$

This system is referred to as R_1 .

Received November 6, 1964