ON PROBABILITY LOGICS

ROLF SCHOCK

Our language contains the following symbols:

- (1) the (individual) variables v_1 , v_2 , and so on;
- (2) the sentential connectives ' \wedge ' ('not'), ' \rightarrow ' ('only if'), ' \wedge ' ('and'), ' \vee ' ('or'), and ' \leftrightarrow ' ('if and only if');
- (3) the variable binders '1' ('the'), 'P' ('the probability that any is a ...'), 'Q' ('the probability that any which is a ... is a ---'), ' \wedge ' ('for all'), and ' \vee ' ('for some');
 - (4) the individual constants '0', '1', ' c_3 ', ' c_4 ', and so on;
 - (5) the 1-place operation symbols '=' ('minus'), ' θ_2^1 ', ' θ_3^1 ', and so on;
- (6) the 2-place operation symbols '+' ('plus'), '.' ('times'), '-' ('minus'), '/' ('divided by'), '7' ('to the power'), ' Γ ' ('the -th non-negative root of'), ' O_7^2 ', ' O_8^2 ', and so on;
- (7) the 3-place operation symbols O_1^3 , O_2^3 , and so on; and so on for any greater number of places;
- (8) the 1-place predicates 'R' ('is a real number'), 'N' ('is a positive integer'), ' P_3^1 ', ' P_4^1 ', and so on;
- (9) the 2-place predicates 'I' ('is identical with'), ' α ' ('is less than'), ' P_3^2 ', ' P_4^2 ', and so on; and
- (10) the 3-place predicates ' P_1^3 ', ' P_2^3 ', and so on; and so on for any greater number of places.

We use the symbols '<', '>' and '{', '}' in the metalanguage to mark the boundaries of non-empty finite sequences and sets respectively. The letter 'm' will be used as a metalinguistic variable ranging overpositive integers. Terms and formulas will be understood as follows:

- (1) all variables and individual constants are terms;
- (2) for any m-place operation symbol o and m-term sequence of terms t, < ot is a term;
- (3) for any variable v and formulas f and g, < '1' vf>, < 'P' vf>, and < 'Q' vfg> are terms;
- (4) for any m-place predicate p and m-term sequence of terms t, $\leq pt >$ is a formula;
- (5) for any formulas f and g, <' N' f>, < f' \rightarrow ' g>, <f' \wedge ' g>, <f' \wedge ' g>, and <f' \leftrightarrow ' g> are formulas; and