ON PROBABILITY LOGICS

ROLF SCHOCK

Our language contains the following symbols:
(1) the (individual) variables ' v_{1} ', ' v_{2} ', and so on;
(2) the sentential connectives ' N ' ('not'), ' \rightarrow ' ('only if'), ' \wedge ' ('and'), ' v ' ('or'), and ' \leftrightarrow ' ('if and only if');
(3) the variable binders ' 1 ' ('the'), ' P ' ('the probability that any - is a \ldots..'), ' Q ' ('the probability that any - which is a \ldots is a $--{ }^{\prime}$), ' Λ '('for all'), and ' \vee ' ('for some');
(4) the individual constants ' 0 ', ' 1 ', ' c_{3} ', ' c_{4} ', and so on;
(5) the 1 -place operation symbols ' I^{\prime} ('minus'), ' O_{2}^{1} ', ' O_{3}^{1} ', and so on;
(6) the 2 -place operation symbols ' + ' ('plus'), ' $'$ ('times'), ' - ' ('minus'), '/' ('divided by'), ' 7 ' ('to the power'), ' Γ ' ('the -th non-negative root of '), ' 0_{7}^{2} ', ' 0_{8}^{2} ', and so on;
(7) the 3 -place operation symbols ' O_{1}^{3} ', ' O_{2}^{3} ', and so on; and so on for any greater number of places;
(8) the 1-place predicates ' R ' ('is a real number'), ' N ' ('is a positive integer'), ' P_{3}^{1} ', ' P_{4}^{1} ', and so on;
(9) the 2 -place predicates ' I ' ('is identical with'), ' α ' ('is less than'), ' P_{3}^{2} ' ' P_{4}^{2} ', and so on; and
(10) the 3-place predicates ' P_{1}^{3} ', ' P_{2}^{3} ', and so on; and so on for any greater number of places.

We use the symbols ' $<$ ', ' $>$ ' and ' $\{$ ', '\}' in the metalanguage to mark the boundaries of non-empty finite sequences and sets respectively. The letter ' m ' will be used as a metalinguistic variable ranging over positive integers. Terms and formulas will be understood as follows:
(1) all variables and individual constants are terms;
(2) for any m-place operation symbol o and m-term sequence of terms $t,\langle o t\rangle$ is a term;
(3) for any variable v and formulas f and $g,\langle ' \eta ' v f\rangle,\langle ' p ' v f\rangle$, and <'Q' vfg > are terms;
(4) for any m-place predicate p and m-term sequence of terms t, $<p t>$ is a formula;
(5) for any formulas f and $g,\left\langle{ }^{\prime} N^{\prime} f\right\rangle,\left\langle f^{\prime} \rightarrow \rightarrow^{\prime} g\right\rangle,\left\langle f^{\prime} \wedge^{\prime} g\right\rangle$, $<f^{\prime} \vee^{\prime} g>$, and $\left\langle f^{\prime} \leftrightarrow{ }^{\prime} g>\right.$ are formulas; and

