Notre Dame Journal of Formal Logic Volume VI, Number 2, April 1965

AN AUGMENTED MODAL LOGIC

LEONARD GODDARD

The purpose of this paper is to examine the extent to which an augmented modal logic may be used as the formalized meta-theory \mathfrak{A} of a formal system \mathcal{S} . The conditions which \mathcal{S} must satisfy are indicated by Roman numerals. Assumptions and theorems of \mathfrak{A} are indicated by Arabic numerals. Comments and examples are enclosed in square brackets.

I Let S consist of the following: (i) a set V of symbols, $v^1, v^2, \dots, v^j, \dots$, (the vocabulary of S); (ii) formation rules; (iii) axioms; (iv) transformation rules.

II Let **F** be the set of formulae $f^1, \overline{f}, \ldots, f^j, \ldots$, of *S*, where each f^i consists of a finite string of symbols v^i .

III Let the following sub-sets of F be selected as follows:

(i) A set W of wff selected recursively from F by the formation rules.

(ii) A set A (the axioms of S) selected recursively from W (commonly by giving a finite list).

(iii) A set P of provable formulae; a set D of disprovable formulae, a set I of irresoluble formulae; selected (but not necessarily recursively) from W by the transformation rules. Let P contain A.

IV Let the operations required to select the various sub-sets of F be entirely formal. [By this we mean that they depend only on the physical characteristics-shape, position, etc.,-of the v^i].

V Let the sets P, D and I satisfy the following conditions:

(i) If, for a given j, f^i occurs in P, then for some definite symbol, v^k say, $v^k f^j$ occurs in D; and conversely, if f^i occurs in D then $v^k f^j$ occurs in P. [Commonly v^k will be the symbol '~' (interpretable as 'not') and we say that f^j and $\overline{v^k} f^j$ is each the negation of the other. We leave it open at this stage whether P (or D) can contain both f^j and $v^k f^j$, for a given j].

(ii) If neither f^{ij} nor $v^k f^{ij}$ occurs in P (in which case, by (i) above, neither occurs in D) then both occurs in I.