ON THE CONNECTION OF THE FIRST-ORDER FUNCTIONAL CALCULUS WITH \aleph_{0} PROPOSITIONAL CALCULUS

JULIUSZ REICHBACH

A simply conclusion from papers [2]-[5] is that for each formula E we may construct a $n(E)$-valued propositional calculus such that if E is not a thesis, then E is false in this calculus by a finite interpretation of the quantifiers; by means of a simply extending of the $n(E)$ valued calculus to \aleph_{0} propositional calculus we may prove in one the converse theorem. This method we have used in [5] and have proved that it is possible to approximate the first-order functional calculus by many valued propositional calculi.

An interest approximation of the first-order functional calculus by \aleph_{0} propositional calculus follows from [3] and [4]. We obtain it by means of constructing of a correspondence between atomic formulas and sequences of numbers 0 and 1 such that:

1. If the atomic formula is of ≥ 2 arguments, then the correspondents sequence is periodic/we shall give the period/.
2. The difference in this correspondence is in general on atomic formulas of one argument whose we must consider an infinite number.
3. For some formulas, e.g. $\Sigma a_{1} \Sigma a_{2} \Pi a_{3} \ldots \Pi a_{k} F$ where \bar{F} is quantifier and individual variable-free, monadic formulas, ..., the \aleph_{0} calculus may be replaced by suitable n - or 2 -valued propositional calculus; one follows from a general theorem.

We shall use the notation of all mentioned papers and in particular:
(1) variables: (1°) individual: x_{1}, x_{2}, \ldots /or simply $x /,\left(2^{\circ}\right)$ apparent: a_{1}, a_{2}, \ldots /or simply $a /$,
(2) finite numbers of functional variables: $f_{1}^{1}, \ldots, f_{q}^{1}, f_{1}^{2}, \ldots, f_{q}^{2}, \ldots, f_{1}^{t}$, $\ldots, f_{\bar{q}}^{t} / f_{i}^{m}$ of m-arguments, $m=1, \ldots, t$ and $i=1, \ldots q /$
(3) logical constants: (negation), + (alternative), Π (general quantifier),
(4) atomic expression: R, R_{1}, R_{2}, \ldots; expressions: E, F, G, E_{1}, F_{1}, $G_{1} \ldots{ }^{1}$

[^0]
[^0]: 1. Expressions and formulas we define in the usual way; the expression in which an apparent variable a belong to the scope of two quantifiers Πa is not a formula; if a does not occur in E, then $\Pi a E$ is not a formula.
