Notre Dame Journal of Formal Logic
Volume V, Number 4, October 1964

K1, K2 AND RELATED MODAL SYSTEMS.

A. N. PRIOR

1. Sobociński refers in [5] to two systems which he calls K1 and K2. If S4 is axiomatised with the rule to infer $\vdash L \alpha$, from $\vdash \propto$, these systems are axiomatisable by adding $C L M p M L p$ and $E L M p M L p$ respectively to $S 4$. It is obvious that K 1 is a subsystem of K 2 , since $E L M p M L p$ is equivalent to $C L M p M L p$ plus its converse CMLpLMp; Sobocinski, in conclusion, raises the question whether it is a "proper" subsystem. This question is equivalent to the question whether, given $S 4, C M L P L M P$ is independent of $C L M P M L p$. That it is, may be established by the following matrix: -

C	1	2	3	4	5	6	7	8	N	M	L
1	1	2	3	4	5	6	7	8	8	1	1
2	1	1	3	3	5	5	7	7	7	2	6
3	1	2	1	2	5	6	5	6	6	3	7
4	1	1	1	1	5	5	5	5	5	4	8
5	1	2	3	4	1	2	3	4	4	1	5
6	1	1	3	3	1	1	3	3	3	2	6
7	1	2	1	2	1	2	1	2	2	3	7
8	1	1	1	1	1	1	1	1	1	8	8

This verifies $S 4$ and $C L M p M L p$, but falsifies $C M L p L M p$ when $p=2,3$, 6 or 7 .

The history of this matrix is worth giving, as it suggests solutions to certain connected problems.
2. In [3], [4] and other papers an interpretation is given for modal functors which may be re-stated, more in the spirit of [2], as follows:Use p, q, r, etc. for propositional variables and a, b, c, etc. for 'worlds" or total states of affairs. Let U represent a certain relation between worlds, and write Tap for "It is the case in world a that p ". Assume, beside quantification theory and identity theory, the following:-

1. ETANpNTap
2. ETaCpqCTapTaq
3. ETaLpПbCUabTbp

From these, given $M p$ as short for $N L N p$, it is easy to deduce
4. $E T a M p \Sigma b K U a b T b p$

