ON THE PROPOSITIONAL SYSTEM A OF VUČKOVIĆ AND ITS EXTENSION．II

BOLESŁAW SOBOCIŃSKI

6．＊Completeness of \mathcal{A} ．The axioms F1－F18 given in 5，together with
 Therefore，in order to prove that system \mathcal{A} determined by these matrices is finitely asiomatizable it has to be shown that every thesis verified by湖 1 － 4 is a consequence of the axioms F1－F18 taken together with the rules RI and RII．Such a proof can be obtained in several ways，and here I shall present the following one：

Let us assume that there are the theses verified by 盘 1 － $\mathrm{Al}^{(4)} 4$ and which are independent from the adopted axiom－system F1－F18．Hence，among them there must exist the shortest independent thesis．It will be shown that such a thesis does not exist，and，therefore，that every thesis verified by \＆月1－f月4 is a consequence of F1－F18 taken together with RI and RII．

6．1 This proof will be conducted as follows．Let us assume that there exists formula 2 which is the shortest independent thesis．Then，it pos－ sesses a certain structural form，i．e．it belongs to a certain structural type T．Hence：
（i）If in the field of \mathcal{A} every formula B belonging to the given type T is inferentially equivalent to one or several such formulas that each of them either is shorter than B or is a consequence of $F 1-F 18$ or is falsified by
 the type T ．
（ii）On the other hand，if in the field of \mathcal{A} every formula B belonging to the given type T is inferentially equivalent to one or several such formulas that 1）at least one of these formulas belongs to certain type T^{\prime} which is simpler in some respect than T ，and 2）the remaining formulas are shorter than \mathfrak{B} ， then，obviously，in the field of \mathcal{A}, B is a consequence of the independent

[^0]
[^0]: ＊The first part of this paper appeared in Notre Dame Journal of Formal Logic，v．V （1964），pp．141－153．It will be referred throughout this part as［14］．See the addi－ tional Bibliography given at the end of this part．An acquaintance with［14］is pre－ supposed．

